
DEPARTMENT OF COMPUTER SCIENCE AND

ENGINEERING

DIGITAL NOTES

ON

DISTRIBUTED SYSTEMS

(R22A0514)

B.TECH III YEAR-I SEM

R22 REGULATION (2025-26)

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution–UGC,Govt.ofIndia)
(Affiliated to JNTUH, Hyderabad, Approved by AICTE - Accredited by NBA & NAAC – ‘A’ Grade - ISO 9001:2015 Certified)

Maisammaguda, Dhulapally (Post Via. Hakimpet), Secunderabad – 500100, Telangana State, INDIA.

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Vision

To acknowledge quality education and instill high patterns of discipline making the

students technologically superior and ethically strong which involves the

improvement in the quality of life in human race.

Mission

To achieve and impart holistic technical education using the best of infrastructure,

outstanding technical and teaching expertise to establish the students into competent

and confident engineers.

 Evolving the center of excellence through creative and innovative teaching learning

practices for promoting academic achievement to produce internationally accepted

competitive and world class professionals.

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

PEO1–ANALYTICAL SKILLS

To facilitate the graduates with the ability to visualize, gather information, articulate, analyze,

solve complex problems, and make decisions. These are essential to address the challenges of

complex and computation intensive problems increasing their productivity.

PEO2–TECHNICAL SKILLS

To facilitate the graduates with the technical skills that prepare them for immediate employment

and pursue certification providing a deeper understanding of the technology in advanced areas

of computer science and related fields, thus encouraging to pursue higher education and

research based on their interest.

PEO3–SOFT SKILLS

To facilitate the graduates with the soft skills that include fulfilling the mission, setting goals,

showing self-confidence by communicating effectively, having a positive attitude, get

involved in team-work, being a leader, managing their career and their life.

PEO4–PROFESSIONAL ETHICS

To facilitate the graduates with the knowledge of professional and ethical responsibilities by

paying attention to grooming, being conservative with style, following dress codes, safety

codes, and adapting them to technological advancements.

PROGRAM SPECIFIC OUTCOMES (PSOs)

After the completion of the course, B.Tech Computer Science and Engineering, the graduates

will have the following Program Specific Outcomes:

1. Fundamentals and critical knowledge of the Computer System:- Able to Understand the

working principles of the computer System and its components, Apply the knowledge to

build, asses, and analyze the software and hardware aspects of it.

2. The comprehensive and Applicative knowledge of Software Development: Comprehensive

skills of Programming Languages, Software process models, methodologies, and able to plan,

develop, test, analyze, and manage the software and hardware intensive systems in

heterogeneous platforms individually or working in teams.

3. Applications of Computing Domain & Research: Able to use the professional, managerial,

interdisciplinary skill set, and domain specific tools in development processes, identify their

search gaps, and provide innovative solutions to them.

PROGRAM OUTCOMES (POs)

Engineering Graduates should possess the following:

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering

fundamentals, and an engineering specialization to the solution of complex engineering

problems.

2. Problem analysis: Identify, formulate, review research literature, and analyze complex

engineering problems reaching substantiated conclusions using first principles of

mathematics, natural sciences, and engineering sciences.

3. Design/development of solutions: Design solutions for complex engineering

problems and design system components or processes that meet the specified needs with

appropriate consideration for the public health and safety, and the cultural, societal ,and

environmental considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and research

methods including design of experiments, analysis and interpretation of data, and synthesis of

the information to provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern

engineering and IT tools including prediction and modeling to complex engineering activities

with an understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess

societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to

the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering

solutions in societal and environmental contexts, and demonstrate the knowledge of, and need

for sustainable development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and
norms of the engineering practice.

9. Individual and team work: Function effectively as an individual, and as member or leader in
diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with the

engineering community and with society at large, such as, being able to comprehend and write

effective reports and design documentation, make effective presentations, and give and

receive clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of the

engineering and management principles and apply these to one’s own work, as a member and

leader in a team, to manage projects and in multidisciplinary environments.

12. Life-long learning: Recognize the need for, and have the preparation and ability to engage
in independent and life-long learning in the broadest context of technological change.

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

III Year B.Tech. CSE–I Sem L/T/P/C

3/0/0/3

(R22A0514)DISTRIBUTED SYSTEMS

COURSE OBJECTIVES:

1. To learn the principles, architectures, algorithms and programming

models used in distributed systems.

2. To understand the algorithms of mutual exclusion, election & multicast

communication.

3. To learn the different mechanisms for Inter process communication and remote

invocations.

4. To acquire knowledge and implement sample distributed systems.

5. To learn transactions and concurrency control mechanisms in different distributed

environments.

UNIT - I

Characterization of Distributed Systems: Introduction, Examples of Distributed

systems, Resource Sharing and Web, Challenges.

System Models: Introduction, Architectural models, Fundamental models.

UNIT - II

Time and Global States: Introduction, Clocks, Events and Process states,

Synchronizing Physical clocks, Logical time and Logical clocks, Global states.

Coordination and Agreement: Introduction, Distributed mutual exclusion,

Elections, Multicast Communication, Consensus and Related problems.

UNIT - III

Inter process Communication: Introduction, Characteristics of Inter process

communication, External Data Representation and Marshalling, Client-Server

Communication, Group Communication.

Distributed Objects and Remote Invocation: Introduction, Communication

between Distributed Objects, Remote Procedure Call, Events and Notifications

UNIT - IV

Distributed File Systems: Introduction, File service Architecture,

Case Study: 1: Sun Network File System, Case Study 2: The Andrew File System.

Distributed Shared Memory: Introduction, Design and Implementation issues,

 Consistency Models.

UNIT - V

Transactions and Concurrency Control: Introduction, Transactions, Nested

Transactions, Locks, Optimistic concurrency control, Timestamp ordering,

Comparison of methods for concurrency control.

Distributed Transactions: Introduction, Flat and Nested Distributed Transactions,

Atomic commit protocols, Concurrency control in distributed transactions,

Distributed deadlocks, Transaction recovery.

TEXT BOOKS:

1. Distributed Systems Concepts and Design, G Coulouris, J Dollimore and TKindberg,Fourth

Edition, Pearson Education. 2009.

REFERENCES:

1. Distributed Systems, Principles and paradigms, Andrew S.Tanenbaum,

MaartenVanSteen, Second Edition, PHI .

2. Distributed Systems, An Algorithm Approach, Sikumar Ghosh, Chapman &

Hall/CRCTaylor& Fransis Group, 2007.

COURSE OUTCOMES:

1. Able to compare different types of distributed systems and different models.

2. Able to analyze the algorithms of mutual exclusion, election & multicast

communication.

3. Able to evaluate the different mechanisms for Interprocess communication and

remote invocations.

4. Able to design and develop new distributed applications.

5. Able to apply transactions and concurrency control mechanisms in different

distributed environments.

INDEX

S. No

Unit Topic Page no

1 I Characterization of Distributed Systems 1-9

2 I System Models 10-25

3 II Time and Global States 26-39

4 II Coordination and Agreement 40-58

5 III Inter Process Communication 59-82

6 III Distributed Objects and Remote Invocation 83-92

7 IV Distributed File Systems 93-107

8 IV Distributed Shared Memory 108-116

9 V Transactions and Concurrency Control 117-162

10 V Distributed Transactions 163-178

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

DISTRIBUTED SYSTEMS AY 2025-26

Page 1

UNIT I

 Characterization of Distributed Systems: Introduction, Examples of Distributed systems,

 Resource sharing and web, challenges.

 System Models: Introduction, Architectural and Fundamental models.

Introduction

A distributed system is a software system in which components located on networked

computers communicate and coordinate their actions by passing messages. The components

interact with each other in order to achieve a common goal.

Distributed systems Principles

A distributed system consists of a collection of autonomous computers, connected

through a network and distribution middleware, which enables computers to coordinate their

activities and to share the resources of the system, so that users perceive the system as a

single, integrated computing facility.

Centralised System Characteristics

 One component with non-autonomous parts

 Component shared by users all the time

 All resources accessible

 Software runs in a single process

 Single Point of control

 Single Point of failure

Distributed System Characteristics

 Multiple autonomous components

 Components are not shared by all users

 Resources may not be accessible

 Software runs in concurrent processes on different processors

 Multiple Points of control

 Multiple Points of failure

Examples of distributed systems and applications of distributed computing include the following:

 telecommunication networks:

 telephone networks and cellular networks,

https://en.wikipedia.org/wiki/Telecommunication
https://en.wikipedia.org/wiki/Telephone_network
https://en.wikipedia.org/wiki/Cellular_network

DISTRIBUTED SYSTEMS AY 2025-26

 Page 2

 computer networks such as the Internet,

 wireless sensor networks,

 routing algorithms;

 World wide web and peer-to-peer networks,

 massively multiplayer online games and virtual reality communities,

 distributed databases and distributed database management systems,

 network file systems,

 distributed information processing systems such as banking systems and airline

reservation systems;

 real-time process control:

 aircraft control systems,

 industrial control systems;

 parallel computation:

 scientific computing, including cluster computing and grid computing and various volunteer

computing projects (see the list of distributed computing projects),

 distributed rendering in computer graphics.

RESOURCE SHARING

• Is the primary motivation of distributed computing

• Resources types

– Hardware, e.g. printer, scanner, camera

– Data, e.g. file, database, web page

– More specific functionality, e.g. search engine, file

• Service

– manage a collection of related resources and present their functionalities to users

and applications

• Server

– a process on networked computer that accepts requests from processes on other

computers to perform a service and responds appropriately

• Client

– the requesting process

• Remote invocation

https://en.wikipedia.org/wiki/Computer_network
https://en.wikipedia.org/wiki/Internet
https://en.wikipedia.org/wiki/Wireless_sensor_networks
https://en.wikipedia.org/wiki/Routing_algorithm
https://en.wikipedia.org/wiki/World_wide_web
https://en.wikipedia.org/wiki/Peer-to-peer_network
https://en.wikipedia.org/wiki/Massively_multiplayer_online_game
https://en.wikipedia.org/wiki/Virtual_reality
https://en.wikipedia.org/wiki/Distributed_database
https://en.wikipedia.org/wiki/Distributed_database_management_system
https://en.wikipedia.org/wiki/Distributed_file_system
https://en.wikipedia.org/wiki/Aircraft
https://en.wikipedia.org/wiki/Industrial_control_systems
https://en.wikipedia.org/wiki/Parallel_computation
https://en.wikipedia.org/wiki/Scientific_computing
https://en.wikipedia.org/wiki/Cluster_computing
https://en.wikipedia.org/wiki/Grid_computing
https://en.wikipedia.org/wiki/Volunteer_computing
https://en.wikipedia.org/wiki/List_of_distributed_computing_projects
https://en.wikipedia.org/wiki/Distributed_rendering

DISTRIBUTED SYSTEMS AY 2025-26

 Page 3

THE CHALLENGES IN DISTRIBUTED SYSTEM:

Heterogeneity

The Internet enables users to access services and run applications over a heterogeneous

collection of computers and networks. Heterogeneity (that is, variety and difference) applies to

all of the following:

 networks;

 computer hardware;

 operating systems;

 programming languages;

 implementations by different developers

Although the Internet consists of many different sorts of network, their differences are masked

by the fact that all of the computers attached to them use the Internet protocols to communicate

with one another. For example, a computer attached to an Ethernet has an implementation of the

Internet protocols over the Ethernet, whereas a computer on a different sort of network will need

an implementation of the Internet protocols for that network.

Data types such as integers may be represented in different ways on different sorts of hardware –

for example, there are two alternatives for the byte ordering of integers. These differences in

representation must be dealt with if messages are to be exchanged between programs running on

different hardware. Although the operating systems of all computers on the Internet need to

include an implementation of the Internet protocols, they do not necessarily all provide the same

application programming interface to these protocols. For example, the calls for exchanging

messages in UNIX are different from the calls in Windows.

Different programming languages use different representations for characters and data structures

such as arrays and records. These differences must be addressed if programs written in different

languages are to be able to communicate with one another. Programs written by different

developers cannot communicate with one another unless they use common standards, for

example, for network communication and the representation of primitive data items and data

structures in messages. For this to happen, standards need to be agreed and adopted – as have the

Internet protocols.

DISTRIBUTED SYSTEMS AY 2025-26

 Page 4

Middleware • The term middleware applies to a software layer that provides a programming

abstraction as well as masking the heterogeneity of the underlying networks, hardware, operating

systems and programming languages. The Common Object Request Broker (CORBA), is an

example. Some middleware, such as Java Remote Method Invocation (RMI), supports only a

single programming language. Most middleware is implemented over the Internet protocols,

which themselves mask the differences of the underlying networks, but all middleware deals

with the differences in operating systems and hardware.

Heterogeneity and mobile code • The term mobile code is used to refer to program code that

can be transferred from one computer to another and run at the destination – Java applets are an

example. Code suitable for running on one computer is not necessarily suitable for running on

another because executable programs are normally specific both to the instruction set and to the

host operating system.

The virtual machine approach provides a way of making code executable on a variety of host

computers: the compiler for a particular language generates code for a virtual machine instead of

particular hardware order code. For example, the Java compiler produces code for a Java

virtual machine, which executes it by interpretation.

The Java virtual machine needs to be implemented once for each type of computer to enable Java

programs to run.

Today, the most commonly used form of mobile code is the inclusion Javascript programs in

some web pages loaded into client browsers.

Openness

The openness of a computer system is the characteristic that determines whether the system can

be extended and reimplemented in various ways. The openness of distributed systems is

determined primarily by the degree to which new resource-sharing services can be added and be

made available for use by a variety of client programs.

Openness cannot be achieved unless the specification and documentation of the key software

interfaces of the components of a system are made available to software developers. In a word,

the key interfaces are published. This process is akin to the standardization of interfaces, but it

often bypasses official standardization procedures,

which are usually cumbersome and slow-moving. However, the publication of interfaces is only

the starting point for adding and extending services in a distributed system. The challenge to

designers is to tackle the complexity of distributed systems consisting of many components

DISTRIBUTED SYSTEMS AY 2025-26

 Page 5

engineered by different people. The designers of the Internet protocols introduced a series of

documents called ‘Requests For Comments’, or RFCs, each of which is known by a number. The

specifications of the Internet communication protocols were published in this series in the early

1980s, followed by specifications for applications that run over them, such as file transfer, email

and telnet by the mid-1980s.

Systems that are designed to support resource sharing in this way are termed open distributed

systems to emphasize the fact that they are extensible. They may be extended at the hardware

level by the addition of computers to the network and at the software level by the introduction of

new services and the reimplementation of old ones, enabling application programs to share

resources.

To summarize:

• Open systems are characterized by the fact that their key interfaces are published.

• Open distributed systems are based on the provision of a uniform communication mechanism

and published interfaces for access to shared resources.

• Open distributed systems can be constructed from heterogeneous hardware and software,

possibly from different vendors. But the conformance of each component to the published

standard must be carefully tested and verified if the system is to work correctly.

Security

Many of the information resources that are made available and maintained in distributed systems

have a high intrinsic value to their users. Their security is therefore of considerable importance.

Security for information resources has three components: confidentiality (protection against

disclosure to unauthorized individuals), integrity(protection against alteration or corruption), and

availability (protection against interference with the means to access the resources).

In a distributed system, clients send requests to access data managed by servers, which involves

sending information in messages over a network. For example:

1. A doctor might request access to hospital patient data or send additions to that data.

2. In electronic commerce and banking, users send their credit card numbers across the Internet.

In both examples, the challenge is to send sensitive information in a message over a network in a

secure manner. But security is not just a matter of concealing the contents of messages – it also

involves knowing for sure the identity of the user or other agent on whose behalf a message was

sent. However, the following two security challenges have not yet been fully met:

Denial of service attacks: Another security problem is that a user may wish to disrupt a service

DISTRIBUTED SYSTEMS AY 2025-26

 Page 6

for some reason. This can be achieved by bombarding the service with such a large number of

pointless requests that the serious users are unable to use it. This is called a denial of service

attack. There have been several denial of service attacks on well-known web services. Currently

such attacks are countered by attempting to catch and punish the perpetrators after the event, but

that is not a general solution to the problem.

Security of mobile code: Mobile code needs to be handled with care. Consider someone who

receives an executable program as an electronic mail attachment: the possible effects of running

the program are unpredictable; for example, it may seem to display an interesting picture but in

reality it may access local resources, or perhaps be part of a denial of service attack.

Scalability

Distributed systems operate effectively and efficiently at many different scales, ranging from a

small intranet to the Internet. A system is described as scalable if it will remain effective when

there is a significant increase in the number of resources and the number of users. The number of

computers and servers in the Internet has increased dramatically. Figure 1.6 shows the increasing

number of computers and web servers during the 12-year history of the Web up to 2005 . It is

interesting to note the significant growth in both computers and web servers in this period, but

also that the relative percentage is flattening out – a trend that is explained by the growth of fixed

and mobile personal computing. One web server may also increasingly be hosted on multiple

computers.

The design of scalable distributed systems presents the following challenges:

Controlling the cost of physical resources: As the demand for a resource grows, it should be

possible to extend the system, at reasonable cost, to meet it. For example, the frequency with

which files are accessed in an intranet is likely to grow as the number of users and computers

increases. It must be possible to add server computers to avoid the performance bottleneck that

would arise if a single file server had to handle all file access requests. In general, for a system

with n users to be scalable, the quantity of physical resources required to support them should be

at most O(n) – that is, proportional to n. For example, if a single file server can support 20 users,

then two such servers should be able to support 40 users.

Controlling the performance loss: Consider the management of a set of data whose size is

proportional to the number of users or resources in the system – for example, the table with the

correspondence between the domain names of computers and their Internet addresses held by the

Domain Name System, which is used mainly to look up DNS names such as www.amazon.com.

Algorithms that use hierarchic structures scale better

http://www.amazon.com/

DISTRIBUTED SYSTEMS AY 2025-26

 Page 7

than those that use linear structures. But even with hierarchic structures an increase in size will

result in some loss in performance: the time taken to access hierarchically structured data is

O(log n), where n is the size of the set of data. For a

system to be scalable, the maximum performance loss should be no worse than this.

Preventing software resources running out: An example of lack of scalability is shown by the

numbers used as Internet (IP) addresses (computer addresses in the Internet). In the late 1970s, it

was decided to use 32 bits for this purpose, but as will be explained in Chapter 3, the supply of

available Internet addresses is running out. For this reason, a new version of the protocol with

128-bit Internet addresses is being adopted, and this will require modifications to many software

components.

Avoiding performance bottlenecks: In general, algorithms should be decentralized to avoid

having performance bottlenecks. We illustrate this point with reference to the predecessor of the

Domain Name System, in which the name table was kept in a single master file that could be

downloaded to any computers that needed it. That was

fine when there were only a few hundred computers in the Internet, but it soon became a serious

performance and administrative bottleneck.

Failure handling

Computer systems sometimes fail. When faults occur in hardware or software, programs may

produce incorrect results or may stop before they have completed the intended computation.

Failures in a distributed system are partial – that is, some components fail while others continue

to function. Therefore the handling of failures is particularly difficult.

Detecting failures: Some failures can be detected. For example, checksums can be used to detect

corrupted data in a message or a file. It is difficult or even impossible to detect some other

DISTRIBUTED SYSTEMS AY 2025-26

 Page 8

failures, such as a remote crashed server in the Internet. The challenge is to manage in the

presence of failures that cannot be detected but may be suspected.

Masking failures: Some failures that have been detected can be hidden or made less severe. Two

examples of hiding failures:

1. Messages can be retransmitted when they fail to arrive.

2. File data can be written to a pair of disks so that if one is corrupted, the other may still

be correct.

Tolerating failures: Most of the services in the Internet do exhibit failures – it would not be

practical for them to attempt to detect and hide all of the failures that might occur in such a large

network with so many components. Their clients can be designed to tolerate failures, which

generally involves the users tolerating them as well. For example, when a web browser cannot

contact a web server, it does not make the user wait forever while it keeps on trying – it informs

the user about the problem, leaving them free to try again later. Services that tolerate failures are

discussed in the paragraph on redundancy below.

Recovery from failures: Recovery involves the design of software so that the state of permanent

data can be recovered or ‘rolled back’ after a server has crashed. In general, the computations

performed by some programs will be incomplete when a fault occurs, and the permanent data

that they update (files and other material stored

in permanent storage) may not be in a consistent state.

Redundancy: Services can be made to tolerate failures by the use of redundant components.

Consider the following examples:

1. There should always be at least two different routes between any two routers in the Internet.

2. In the Domain Name System, every name table is replicated in at least two different servers.

3. A database may be replicated in several servers to ensure that the data remains accessible

after the failure of any single server; the servers can be designed to detect faults in their peers;

when a fault is detected in one server, clients are redirected to the remaining servers.

Concurrency

Both services and applications provide resources that can be shared by clients in a distributed

system. There is therefore a possibility that several clients will attempt to access a shared

resource at the same time. For example, a data structure that records bids for an auction may be

accessed very frequently when it gets close to the deadline time. The process that manages a

shared resource could take one client request at a time. But that approach limits throughput.

DISTRIBUTED SYSTEMS AY 2025-26

 Page 9

Therefore services and applications generally allow multiple client requests to be processed

concurrently. To make this more concrete, suppose that each resource is encapsulated as an

object and that invocations are executed in concurrent threads. In this case it is possible that

several threads may be executing concurrently within an object, in which case their operations on

the object may conflict with one another and produce inconsistent results.

Transparency

Transparency is defined as the concealment from the user and the application programmer of the

separation of components in a distributed system, so that the system is perceived as a whole

rather than as a collection of independent components. The implications of transparency are a

major influence on the design of the system software.

Access transparency enables local and remote resources to be accessed using identical

operations.

Location transparency enables resources to be accessed without knowledge of their physical or

network location (for example, which building or IP address).

Concurrency transparency enables several processes to operate concurrently using shared

resources without interference between them.

Replication transparency enables multiple instances of resources to be used to increase reliability

and performance without knowledge of the replicas by users or application programmers.

Failure transparency enables the concealment of faults, allowing users and application programs

to complete their tasks despite the failure of hardware or software components.

Mobility transparency allows the movement of resources and clients within a system without

affecting the operation of users or programs.

Performance transparency allows the system to be reconfigured to improve performance as

loads vary.

Scaling transparency allows the system and applications to expand in scale without change to the

system structure or the application algorithms.

Quality of service

Once users are provided with the functionality that they require of a service, such as the file

service in a distributed system, we can go on to ask about the quality of the service provided. The

main nonfunctional properties of systems that affect the quality of the service experienced by

clients and users are reliability, security and performance.

Adaptability to meet changing system configurations and resource availability has been

recognized as a further important aspect of service quality.

DISTRIBUTED SYSTEMS AY 2025-26

 Page 10

Some applications, including multimedia applications, handle time-critical data – streams of data

that are required to be processed or transferred from one process to another at a fixed rate. For

example, a movie service might consist of a client program that is retrieving a film from a video

server and presenting it on the user’s screen. For a satisfactory result the successive frames of

video need to be displayed to the user within some specified time limits.

In fact, the abbreviation QoS has effectively been commandeered to refer to the ability of

systems to meet such deadlines. Its achievement depends upon the availability of the necessary

computing and network resources at the appropriate times. This implies a requirement for the

system to provide guaranteed computing and communication resources that are sufficient to

enable applications to complete each task on time (for example, the task of displaying a frame of

video).

INTRODUCTION TO SYSTEM MODELS

Systems that are intended for use in real-world environments should be designed to function

correctly in the widest possible range of circumstances and in the face of many possible

difficulties and threats .

Each type of model is intended to provide an abstract, simplified but consistent description of a

relevant aspect of distributed system design:

Physical models are the most explicit way in which to describe a system; they capture the

hardware composition of a system in terms of the computers (and other devices, such as mobile

phones) and their interconnecting networks.

Architectural models describe a system in terms of the computational and communication tasks

performed by its computational elements; the computational elements being individual

computers or aggregates of them supported by appropriate network interconnections.

Fundamental models take an abstract perspective in order to examine individual aspects of a

distributed system. The fundamental models that examine three important aspects of distributed

systems: interaction models, which consider the structure and sequencing of the communication

between the elements of the system; failure models, which consider the ways in which a system

may fail to operate correctly and; security models, which consider how the system is protected

against attempts to interfere with its correct operation or to steal its data.

Architectural models

The architecture of a system is its structure in terms of separately specified components and their

interrelationships. The overall goal is to ensure that the structure will meet present and likely

future demands on it. Major concerns are to make the system reliable, manageable, adaptable and

DISTRIBUTED SYSTEMS AY 2025-26

 Page 11

cost-effective. The architectural design of a building has similar aspects – it determines not only

its appearance but also its general structure and architectural style (gothic, neo-classical, modern)

and provides a consistent frame of reference for the design.

Software layers

The concept of layering is a familiar one and is closely related to abstraction. In a layered

approach, a complex system is partitioned into a number of layers, with a given layer making use

of the services offered by the layer below. A given layer therefore offers a software abstraction,

with higher layers being unaware of implementation details, or indeed of any other layers beneath

them.

In terms of distributed systems, this equates to a vertical organization of services into service

layers. A distributed service can be provided by one or more server processes, interacting with

each other and with client processes in order to maintain a consistent system-wide view of the

service’s resources. For example, a network time service is implemented on the Internet based on

the Network Time Protocol (NTP) by server processes running on hosts throughout the Internet

that supply the current time to any client that requests it and adjust their version of the current

time as a result of interactions with each other. Given the complexity of distributed systems, it is

often helpful to organize such services into layers. the important terms platform and middleware,

which define as follows:

The important terms platform and middleware, which is defined as follows:

A platform for distributed systems and applications consists of the lowest-level hardware and

software layers. These low-level layers provide services to the layers above them, which are

implemented independently in each computer, bringing the system’s programming interface up

to a level that facilitates communication and coordination between processes. Intel x86/Windows,

Intel x86/Solaris, Intel x86/Mac OS X, Intel x86/Linux and ARM/Symbian are majorexamples.

– Remote Procedure Calls – Client programs call procedures in server programs

– Remote Method Invocation – Objects invoke methods of objects on distributed hosts

– Event-based Programming Model – Objects receive notice of events in other objects inwhich

they have interest

Middleware

• Middleware: software that allows a level of programming beyond processes and message

passing

– Uses protocols based on messages between processes to provide its higher-level abstractions

DISTRIBUTED SYSTEMS AY 2025-26

 Page 12

– such as remote invocation and events

– Supports location transparency

– Usually uses an interface definition language (IDL) to define interfaces

Interfaces in Programming Languages

– Current PL allow programs to be developed as a set of modules that communicate with each

other. Permitted interact ions between modules are defined by interfaces

– A specified interface can be implemented by different modules without the need to modify

other modules using the interface

• Interfaces in Distributed Systems

– When modules are in different processes or on different hosts there are limitations on the

interactions that can occur. Only actions with parameters that are fully specified and

understood can communicate effectively to request or provide services to modules in another

process.

– A service interface allows a client to request and a server to provide particular services

– A remote interface allows objects to be passed as arguments to and results from distributed

modules.

DISTRIBUTED SYSTEMS AY 2025-26

 Page 13

• Object Interfaces

– An interface defines the signatures of a set of methods, including arguments, argument

types, return values and exceptions. Implementation details are not included in an interface.

– A class may implement an interface by specifying behavior for each method in the

interface. Interfaces do not have constructors.

– System architectures

– Client-server: This is the architecture that is most often cited when distributed systems are

discussed. It is historically the most important and remains the most widely employed. Figure

2.3 illustrates the simple structure in which processes take on the roles of being clients or

servers. In particular, client processes interact with individual server processes in potentially

separate host computers in order to access the shared resources that they manage.

– Servers may in turn be clients of other servers, as the figure indicates. For example, a web

server is often a client of a local file server that manages the files in which the web pages are

stored. Web servers and most other Internet services are clients of the DNS service, which

translates Internet domain names to network addresses.

Clients invoke individual servers

Another web-related example concerns search engines, which enable users to look up summaries

of information available on web pages at sites throughout the Internet. These summaries are

made by programs called web crawlers, which run in the background at a search engine site

using HTTP requests to access web servers throughout the Internet. Thus a search engine is both

a server and a client: it responds to queries from browser clients and it runs web crawlers that act

as clients of other web servers. In this example, the server tasks (responding to user queries) and

the crawler tasks (making requests to other web servers) are entirely independent; there is little

Page 14

DISTRIBUTED SYSTEMS AY 2025-26

need to synchronize them and they may run concurrently. In fact, a typical search engine would

normally include many concurrent threads of execution, some serving its clients and others

running web crawlers. In Exercise 2.5, the reader is invited to consider the only synchronization

issue that does arise for a concurrent search engine of the type outlined here.

Peer-to-peer: In this architecture all of the processes involved in a task or activity play similar

roles, interacting cooperatively as peers without any distinction between client and server

processes or the computers on which they run. In practical terms, all participating processes run

the same program and offer the same set of interfaces to each other. While the client-server

model offers a direct and relatively simple approach to the sharing of data and other resources, it

scales poorly.

DISTRIBUTED SYSTEMS AY 2025-26

Page 15

A number of placement strategies have evolved in response to this problem, but none of them

addresses the fundamental issue – the need to distribute shared resources much more widely

in order to share the computing and communication loads incurred in accessing them

amongst a much larger number of computers and network links. The key insight that led to

the development of peer-to-peer systems is that the network and computing resources owned

by the users of a service could also be put to use to support that service. This has the useful

consequence that the resources available to run the service grow with the number of users.

Models of systems share some fundamental properties. In particular, all of them are

composed of processes that communicate with one another by sending messages over a

computer network. All of the models share the design requirements of achieving the

performance and reliability characteristics of processes and networks and ensuring the

security of the resources in the system.

About their characteristics and the failures and security risks they might exhibit. In general,

such a fundamental model should contain only the essential ingredients that need to consider

in order to understand and reason about some aspects of a system’s behaviour. The purpose

of such a model is:

• To make explicit all the relevant assumptions about the systems we are modelling.

• To make generalizations concerning what is possible or impossible, given those

assumptions. The generalizations may take the form of general-purpose algorithms or

desirable properties that are guaranteed. The guarantees are

dependent on logical analysis and, where appropriate, mathematical proof.

The aspects of distributed systems that we wish to capture in our fundamental models are

intended to help us to discuss and reason about:

Interaction: Computation occurs within processes; the processes interact by passing

messages, resulting in communication (information flow) and coordination (synchronization

and ordering of activities) between processes. In the analysis and design of distributed

systems we are concerned especially with these interactions. The interaction model must

reflect the facts that communication takes place with delays that are often of considerable

duration, and that the accuracy with which independent processes can be coordinated is

limited by these delays and by the difficulty of maintaining the same notion of time across all

the computers in a distributed system.

DISTRIBUTED SYSTEMS AY 2025-26

Page 16

Failure: The correct operation of a distributed system is threatened whenever a fault occurs

in any of the computers on which it runs (including software faults) or in the network that

connects them. Our model defines and classifies the faults. This provides a basis for the

analysis of their potential effects and for the design of systems that are able to tolerate faults

of each type while continuing to run correctly.

Security: The modular nature of distributed systems and their openness exposes them to

attack by both external and internal agents. Our security model defines and classifies the

forms that such attacks may take, providing a basis for the analysis of threats to a system and

for the design of systems that are able to resist them.

Fundamental Models

Interaction model

Fundamentally distributed systems are composed of many processes, interacting in complex

ways. For example:

 Multiple server processes may cooperate with one another to provide a service; the examples

mentioned above were the Domain Name System, which partitions and replicates its data at

servers throughout the Internet, and Sun’s Network Information Service, which keeps

replicated copies of password files at several servers in a local area network.

 A set of peer processes may cooperate with one another to achieve a common goal: for

example, a voice conferencing system that distributes streams of audio data in a similar

manner, but with strict real-time constraints.

Most programmers will be familiar with the concept of an algorithm – a sequence of

steps to be taken in order to perform a desired computation. Simple programs are controlled

by algorithms in which the steps are strictly sequential. The behaviour of the program and the

state of the program’s variables is determined by them. Such a program is executed as a

single process. Distributed systems composed of multiple processes such as those outlined

above are more complex. Their behaviour and state can be described by a distributed

algorithm – a definition of the steps to be taken by each of the processes of which the system

is composed, including the transmission of messages between them. Messages are transmitted

between processes to transfer information between them and to coordinate their activity.

Two significant factors affecting interacting processes in a distributed system:

DISTRIBUTED SYSTEMS AY 2025-26

Page 17

• Communication performance is often a limiting characteristic.

• It is impossible to maintain a single global notion of time.

Performance of communication channels • The communication channels in our model are

realized in a variety of ways in distributed systems – for example, by an implementation of

streams or by simple message passing over a computer network. Communication over a

computer network has the following performance characteristics relating to latency,

bandwidth and jitter:

The delay between the start of a message’s transmission from one process and the beginning

of its receipt by another is referred to as latency. The latency includes:

– The time taken for the first of a string of bits transmitted through a network to reach its

destination. For example, the latency for the transmission of a message through a satellite link

is the time for a radio signal to travel to the satellite and back.

– The delay in accessing the network, which increases significantly when the network is

heavily loaded. For example, for Ethernet transmission the sending station waits for the

network to be free of traffic.

– The time taken by the operating system communication services at both the sending and

the receiving processes, which varies according to the current load on the operatingsystems.

• The bandwidth of a computer network is the total amount of information that can be

transmitted over it in a given time. When a large number of communication channels are

using the same network, they have to share the available bandwidth.

• Jitter is the variation in the time taken to deliver a series of messages. Jitter is relevant to

multimedia data. For example, if consecutive samples of audio data are played with differing

time intervals, the sound will be badly distorted.

Computer clocks and timing events • Each computer in a distributed system has its own

internal clock, which can be used by local processes to obtain the value of the current time.

Therefore two processes running on different computers can each associate timestamps with

their events. However, even if the two processes read their clocks at the same time, their local

clocks may supply different time values. This is because computer clocks drift from perfect

time and, more importantly, their drift rates differ from one another. The term clock drift rate

refers to the rate at which a computer clock deviates from a perfect reference clock. Even if

the clocks on all the computers in a distributed system are set to the same time initially, their

clocks will

DISTRIBUTED SYSTEMS AY 2025-26

Page 18

eventually vary quite significantly unless corrections are applied.

Two variants of the interaction model • In a distributed system it is hard to set limits on the

time that can be taken for process execution, message delivery or clock drift. Two opposing

extreme positions provide a pair of simple models – the first has a strong assumption of time

and the second makes no assumptions about time:

Synchronous distributed systems: Hadzilacos and Toueg define a synchronous distributed

system to be one in which the following bounds are defined:

• The time to execute each step of a process has known lower and upper bounds.

• Each message transmitted over a channel is received within a known bounded time.

• Each process has a local clock whose drift rate from real time has a known bound.

Asynchronous distributed systems: Many distributed systems, such as the Internet, are

very useful without being able to qualify as synchronous systems. Therefore we need an

alternative model. An asynchronous distributed system is one in which there are no bounds

on:

• Process execution speeds – for example, one process step may take only a picosecond

and another a century; all that can be said is that each step may take an arbitrarily long time.

• Message transmission delays – for example, one message from process A to process B may

be delivered in negligible time and another may take several years. In other words, a message

may be received after an arbitrarily long time.

• Clock drift rates – again, the drift rate of a clock is arbitrary.

ordering • In many cases, we are interested in knowing whether an event (sending or

receiving a message) at one process occurred before, after or concurrently with another event

at another process. The execution of a system can be described in terms of events and their

ordering despite the lack of accurate clocks. For example, consider the following set of

exchanges between a group of email users, X, Y, Z and A, on a mailing list:

1. User X sends a message with the subject Meeting.

2. Users Y and Z reply by sending a message with the subject Re: Meeting.

In real time, X’s message is sent first, and Y reads it and replies; Z then reads both X’s

message and Y’s reply and sends another reply, which references both X’s and Y’s

messages. But due to the independent delays in message delivery, the messages may be

delivered as shown in the following figure and some users may view these two messages in

the wrong order.

DISTRIBUTED SYSTEMS AY 2025-26

Page 19

1 4
m send

1
m2

receive
2 3

recei

 ve

send

receive receive

send

X

receive receive

Y

Zm1 m2

A

Physic

al

time

receive receive receive

t1 t2 t3

DISTRIBUTED SYSTEMS AY 2025-26

Page 20

send m

Failure model

In a distributed system both processes and communication channels may fail – that is, they

may depart from what is considered to be correct or desirable behaviour. The failure model

defines the ways in which failure may occur in order to provide an understanding of the

effects of failures. Hadzilacos and Toueg provide a taxonomy that distinguishes between the

failures of processes and communication channels. These are presented under the headings

omission failures, arbitrary failures and timing failures.

Omission failures • The faults classified as omission failures refer to cases when a process

or communication channel fails to perform actions that it is supposed to do.

Process omission failures: The chief omission failure of a process is to crash. When, say that

a process has crashed we mean that it has halted and will not execute any further steps

of its program ever. The design of services that can survive in the presence of faults can be

simplified if it can be assumed that the services on which they depend crash cleanly –

that is, their processes either function correctly or else stop. Other processes may be able to

detect such a crash by the fact that the process repeatedly fails to respond to invocation

messages. However, this method of crash detection relies on the use of timeouts – that is,

a method in which one process allows a fixed period of time forsomething to occur. In

an asynchronous system a timeout can indicate only that a process is not responding – it

may have crashed or may be slow, or the messages may not have arrived.

Communication omission failures: Consider the communication primitives send and receive.

A process p performs a send by inserting the message m in its outgoing message buffer. The

communication channel transports m to q’s incoming message buffer. Process q performs a

receive by taking m from its incoming message buffer and delivering it. The outgoing and

incoming message buffers are typically provided by the operating system.

processp process q

Outgoingmessagebuffer Incomingmessagebuffer

receive

Communication channel

DISTRIBUTED SYSTEMS AY 2025-26

Page 21

Arbitrary failures • The term arbitrary or Byzantine failure is used to describe the worst

possible failure semantics, in which any type of error may occur. For example, a process may

set wrong values in its data items, or it may return a wrong value in response to an

invocation.

An arbitrary failure of a process is one in which it arbitrarily omits intended processing steps

or

takes unintended processing steps. Arbitrary failures in processes cannot be detected by

seeing whether the process responds to invocations, because it might arbitrarily omit to reply.

Communication channels can suffer from arbitrary failures; for example, message contents

may be corrupted, nonexistent messages may be delivered or real messages may be delivered

more than once. Arbitrary failures of communication channels are rare because the

communication software is able to recognize them and reject the faulty

messages. For example, checksums are used to detect corrupted messages, and message

sequence numbers can be used to detect nonexistent and duplicated messages.

Timing failures • Timing failures are applicable in synchronous distributed systems where

time limits are set on process execution time, message delivery time and clock drift rate.

Timing failures are listed in the following figure. Any one of these failures may result in

responses being unavailable to clients within a specified time interval.

In an asynchronous distributed system, an overloaded server may respond too slowly, but we

cannot say that it has a timing failure since no guarantee has been offered. Real-time

operating systems are designed with a view to providing timing guarantees, but they are more

complex to design and may require redundant hardware.

DISTRIBUTED SYSTEMS AY 2025-26

Page 22

 Most general-purpose operating systems such as UNIX do not have to meet real-time

constraints.

Masking failures • Each component in a distributed system is generally constructed from a

collection of other components. It is possible to construct reliable services from

components that exhibit failures. For example, multiple servers that hold replicas of data

can continue to provide a service when one of them crashes. A knowledge of the failure

characteristics of a component can enable a new service to be designed to mask the failure

of the components on which it depends. A service masks a failure either by hiding it

altogether or by converting it into a more acceptable type of failure. For an example of the

latter, checksums are used to mask corrupted messages, effectively converting an arbitrary

failure into an omission failure. The omission failures can be hidden by using a protocol

that retransmits messages that do not arrive at their destination. Even process crashes may

be masked, by replacing the process and restoring its memory from information stored on

disk by its predecessor.

Reliability of one-to-one communication • Although a basic communication channel can

exhibit the omission failures described above, it is possible to use it to build a

communication service that masks some of those failures.

The term reliable communication is defined in terms of validity and integrity as follows:

Validity: Any message in the outgoing message buffer is eventually delivered to the

incoming message buffer.

Integrity: The message received is identical to one sent, and no messages are delivered

twice. The threats to integrity come from two independent sources:

• Any protocol that retransmits messages but does not reject a message that arrives twice.

Protocols can attach sequence numbers to messages so as to detect those that are delivered

twice.

• Malicious users that may inject spurious messages, replay old messages or tamper with

messages. Security measures can be taken to maintain the integrity property in the face of

such attacks.

DISTRIBUTED SYSTEMS AY 2025-26

Page 23

Security model

The sharing of resources as a motivating factor for distributed systems, and in Section 2.3

we described their architecture in terms of processes, potentially encapsulating higher-level

abstractions such as objects, components or services, and providing access to them through

interactions with other processes. That architectural model provides the basis for our security

model:the security of a distributed system can be achieved by securing the processes and

the channels used for their interactions and by protecting the objects that they encapsulate

against unauthorized access.

Protection is described in terms of objects, although the concepts apply equally well to

resources of all types

 Protecting objects :

Server that manages a collection of objects on behalf of some users. The users can run client

programs that send invocations to the server to perform operations on the objects. The server

carries out the operation specified in each invocation and sends the result to the client.

Objects are intended to be used in different ways by different users. For example, some

objects may hold a user’s private data, such as their mailbox, and other objects may hold

shared data such as web pages. To support this, access rights specify who is allowed to

perform the operations of an object – for example, who is allowed to read or to write its state.

Object

Principal (user) Network Principal (server)

Securing processes and their interactions • Processes interact by sending messages. The

messages are exposed to attack because the network and the communication service that they

use are open, to enable any pair of processes to interact. Servers and peer processes expose their

interfaces, enabling invocations to be sent to them by any other process.

The enemy • To model security threats, we postulate an enemy (sometimes also known as

the adversary) that is capable of sending any message to any process and reading or copying

any message sent between a pair of processes, as shown in the following figure. Such attacks

invocation

result

DISTRIBUTED SYSTEMS AY 2025-26

Page 24

can be made simply by using a computer connected to a network to run a program that reads

network

 messages addressed to other computers on the network, or a program that generates

messages that make false requests to services, purporting to come from authorized users. The

attack may come from a computer that is legitimately connected to the network or from one

that is connected in an unauthorized manner. The threats from a potential enemy include

threats to processes and threats to communication channels.

Defeating security threats

Cryptography and shared secrets: Suppose that a pair of processes (for example, a particular

client and a particular server) share a secret; that is, they both know the secret but no other

process in the distributed system knows it. Then if a message exchanged by that pair of

processes includes information that proves the sender’s knowledge of the

shared secret, the recipient knows for sure that the sender was the other process in the pair.

Of course, care must be taken to ensure that the shared secret is not revealed to an enemy.

Cryptography is the science of keeping messages secure, and encryption is the process of

scrambling a message in such a way as to hide its contents. Modern cryptography is based on

encryption algorithms that use secret keys – large numbers that are difficult to guess – to

transform data in a manner that can only be reversed with knowledge of the corresponding

decryption key.

Authentication: The use of shared secrets and encryption provides the basis for the

authentication of messages – proving the identities supplied by their senders. The basic

authentication technique is to include in a message an encrypted portion that contains enough

of the contents of the message to guarantee its authenticity. The authentication portion of a

request to a file server to read part of a file, for example, might include a representation of

the requesting principal’s identity, the identity of the file and the date and time of the request,

DISTRIBUTED SYSTEMS AY 2025-26

Page 25

all encrypted with a secret key shared between the file server and the requesting process. The

server would decrypt this and check that it corresponds to the unencrypted details specified in

the request.

Secure channels: Encryption and authentication are used to build secure channels as a service

layer on top of existing communication services. A secure channel is a communication

channel connecting a pair of processes, each of which acts on behalf of a principal, as shown

in the following figure. A secure channel has the following properties:

• Each of the processes knows reliably the identity of the principal on whose behalf the

other process is executing. Therefore if a client and server communicate via a secure

channel, the server knows the identity of the principal behind the invocations and can check

their access rights before performing an operation. This enables the server to protect its

objects correctly and allows the client to be sure that it is receiving results from a bona fide

server.

• A secure channel ensures the privacy and integrity (protection against tampering) of the

data transmitted across it.

• Each message includes a physical or logical timestamp to prevent messages from being

replayed or reordered.

 Communication aspects of middleware, although the principles discussed are more widely

applicable.

 This one is concerned with the design of the components shown in the darker layer in the

following figure.

Applications,services

DISTRIBUTED SYSTEMS AY 2025-26

Page 26

UNIT II

Time and Global States: Introduction, Clocks, Events and Process states, Synchronizing

physical clocks, Logical time and Logical clocks, Global states,.

 Coordination and Agreement: Introduction, Distributed mutual exclusion, Elections,

Multicast Communication, Consensus and Related problems.

 CLOCKS, EVENTS AND PROCESS STATES

Each process executes on a single processor, and the processors do not share memory. Each

process pi in has a state si that, in general, it transforms as it executes. The process’s state

includes the values of all the variables within it. Its state may also include the values of any

objects in its local operating system environment that it affects, such as files. We assume that

processes cannot communicate with one another in any way except by sending messages

through the network.

 So, for example, if the processes operate robot arms connected to their respective nodes in

the system, then they are not allowed to communicate by shaking one another’s robot hands!

As each process pi executes it takes a series of actions, each of which is either amessage send

or receive operation, or an operation that transforms pi ’s state – one that changes one or

more of the values in si. In practice, we may choose to use a high-leveldescription of the

actions, according to the application. For example, if the processes in are engaged in an

eCommerce application, then the actions may be ones such as ‘client dispatched order

message’ or ‘merchant server recorded transaction to log’. We define an event to be the

occurrence of a single action that a process carries out as it executes – a communication

action or a state-transforming action. The sequence of events within a single process pi can

be placed in a single, total ordering, which we denote by the relation i between the events.

That is, if and only if the event e occurs before e at pi . This ordering is well defined, whether

or not the process is multithreaded, since we have assumed that the process executes on a

single processor. Now we can define the history of process pi to be the series of events that

take place within it, ordered as we have described by the relation

 Clocks • We have seen how to order the events at a process, but not how to timestamp

them – i.e., to assign to them a date and time of day. Computers each contain their own

physical clocks. These clocks are electronic devices that count oscillations occurring in a

crystal at a definite frequency, and typically divide this count and store the result in a counter

register. Clock devices can be programmed

DISTRIBUTED SYSTEMS AY 2025-26

Page 27

to generate interrupts at regular intervals in order that, for example, timeslicing can be

implemented; however, we shall not concern ourselves with this aspect of clock operation.

 The operating system reads the node’s hardware clock value, Hit , scales it and adds an offset

 to produce a software clock Cit = Hit + that approximately measures real, physical time t for

process pi

In other words, when the real time in an absolute frame of reference is t, Cit is the reading on

the software clock. For example, Cit could be the 64-bit value of the number of nanoseconds

that have elapsed at time t since a convenient reference time. In general, the clock is not

completely accurate, so Cit will differ from t. Nonetheless, if Ci behaves sufficiently well

(we shall examine the notion of clock correctness shortly), we can use its value to timestamp

any event at pi . Note that successive events will correspond to different timestamps only if

the clock resolution – the period between updates of the clock value – is smaller than the

time interval between successive events. The rate at which events occur depends on such

factors as the length of the processor instruction cycle.

Clock skew and clock drift • Computer clocks, like any others, tend not to be in perfect

agreement

Coordinated Universal Time • Computer clocks can be synchronized to external sources of

highly accurate time. The most accurate physical clocks use atomic oscillators, whose drift

rate is about one part in 1013. The output of these atomic clocks is used as the standard

second has been defined as 9,192,631,770 periods of transition between the two hyperfine

levels of the ground state of Caesium- 133 (Cs133). Seconds and years and other time units

that we use are rooted in astronomical time. They were originally defined in terms of the

rotation of the Earth on its axis and its rotation about the Sun. However, the period of the

Earth’s rotation about its axis is gradually getting longer, primarily because of tidal friction;

atmospheric effects and convection currents within the Earth’s core also cause short-term

increases and decreases in the period. So astronomical time and atomic time have a tendency

to get out of step.

Coordinated Universal Time – abbreviated as UTC (from the French equivalent) – is an

international standard for timekeeping. It is based on atomic time, but a so-called ‘leap

second’ is inserted – or, more rarely, deleted – occasionally to keep it in step with

astronomical time. UTC signals are synchronized and broadcast regularly from landbased

radio stations and satellites covering many parts of the world. For example, in the USA, the

radio station WWV broadcasts time signals on several shortwave frequencies.

Satellite sources include the Global Positioning System (GPS).Receivers are available

commercially. Compared with ‘perfect’ UTC, the signals received from land-based stations

DISTRIBUTED SYSTEMS AY 2025-26

Page 28

have an accuracy on the order of 0.1–10 milliseconds,depending on the station used. Signals

received from GPS satellites are accurate to about 1 microsecond. Computers with receivers

attached can synchronize their clocks with these timing signals.

Synchronizing physical clocks

In order to know at what time of day events occur at the processes in our distributed system –

for example, for accountancy purposes – it is necessary to synchronize the processes’ clocks,

Ci , with an authoritative, external source of time. This is external synchronization. And if

the clocks Ci are synchronized with one another to a known degree of accuracy, then we can

measure the interval between two events occurring at different computers by appealing to

their local clocks, even though they are not necessarily synchronized to an external source of

time. This is internal synchronization.We define these two modes of synchronization more

closely as follows, over an interval of real time I:

External synchronization: For a synchronization bound D 0 , and for a source S of UTC time,

St – Cit < D, for i = 1 2N and for all real times t in I. Another way of saying this is that the

clocks Ci are

accurate to within the bound D.

Internal synchronization: For a synchronization bound D 0 , Cit – Cjt D for i j = 1 2N , and

for all real times t in I. Another way of saying this is that he clocks Ci agree within the

bound D. Clocks that are internally synchronized are not necessarily externally synchronized,

since they may drift collectively from an external source of time even though they agree with

one another. However, it follows from the definitions that if the system is externally

synchronized with a bound D then the same system is internally synchronized with a bound

of 2D. Various notions of correctness for clocks have been suggested. It is common to define

a hardware clock H to be correct if its drift rate falls within a known bound (a value derived

from one supplied by the manufacturer, such as 10–6 seconds/second).

This means that the error in measuring the interval between real times t and t (t t) is

bounded: 1 – t – t Ht – Ht 1 + t – t

This condition forbids jumps in the value of hardware clocks (during normal operation).

Sometimes we also require our software clocks to obey the condition but a weaker condition

of monotonicity may suffice. Monotonicity is the condition that a clock C only ever

advances: t t Ct Ct For example, the UNIX make facility is a tool that is used to compile only

those source files that have been modified since they were last compiled. The modification

dates of each corresponding pair of source and object files are compared to determine this

condition. If a computer whose clock was running fast set its clock back after compiling a

source file but before the file was changed, the source file might appear

DISTRIBUTED SYSTEMS AY 2025-26

Page 29

to have been modified prior to the compilation. Erroneously, make will not recompile the

source file. We can achieve monotonicity despite the fact that a clock is found to be running

fast. We need only change the rate at which updates are made to the time as given to

applications. This can be achieved in software without changing the rate at which the

underlying hardware clock ticks – recall that Cit =Hit + , where we are free to choose the

values of and . A hybrid correctness condition that is sometimes applied is to require that a

clock obeys the monotonicity condition, and that its drift rate is bounded between

synchronization points, but to allow the clock value to jump ahead at synchronization points.

A clock that does not keep to whatever correctness conditions apply is defined to be faulty. A

clock’s crash failure is said to occur when the clock stops ticking altogether;any other clock

failure is an arbitrary failure. A historical example of an arbitrary failure is that of a clock

with the ‘Y2K bug’, which broke the monotonicity condition by registering the date after 31

December 1999 as 1 January 1900 instead of 2000; another example is a clock whose

batteries are very low and whose drift rate suddenly becomes very large. Note that clocks do

not have to be accurate to be correct, according to the definitions. Since the goal may be

internal rather than external synchronization, the criteria for correctness are only

concerned with the proper functioning of the clock’s ‘mechanism’, not its absolute setting.

We now describe algorithms for external synchronization and for internal synchronization.

Logical time and logical clocks

From the point of view of any single process, events are ordered uniquely by times

shown on the local clock. However, as Lamport [1978] pointed out, since we cannot

synchronize clocks perfectly across a distributed system, we cannot in general use

physical time to find out the order of any arbitrary pair of events occurring within it. In

general, we can use a scheme that is similar to physical causality but that applies in

distributed systems to order some of the events that occur at different processes. This

ordering is based on two simple and intuitively obvious points: • If two events occurred

at the same process pi i = 1 2 N , then they occurred in the order in which pi observes them

– this is the order i that we defined above.• Whenever a message is sent between

processes, the eventof sending the message occurred before the event of receiving the

message.

Lamport called the partial ordering obtained by generalizing these two relationships the

happened-before relation. It is also sometimes known as the relation of causal ordering or

potential causal ordering. We can define the happened-before relation, denoted by , as follows:

HB1: If processpi : e i e', then e e .HB2: For any message m, send(m) receive(m) – where

DISTRIBUTED SYSTEMS AY 2025-26

Page 30

send(m) is the event of sending the message, and receive(m)s the event of receiving it. HB3: If e,

e and e are events such that e e and e e , then e e .

Totally ordered logical clocks • Some pairs of distinct events, generated by different

processes, have numerically identical Lamport timestamps. However, we can create a total

order on the set ofevents– that is, one for which all pairs of distinct events are ordered – by

taking into account the identifiers of the processes at which events occur. If e is an event

occurring at pi with local timestamp Ti , and e is an event occurring at pj with local

timestamp Tj , we define the global logical timestamps for these events to be Ti i and Tj j ,

respectively. And we define Ti i Tj j if and only if either Ti Tj , or Ti = Tj and i j . This

ordering has no general physical significance (because process identiiers are arbitrary), but it

is sometimes useful. Lamport used it, for example, to order the entry of processes to a critical

section.

Vector clocks • Mattern [1989] and Fidge [1991] developed vector clocks to overcome the

shortcoming of Lamport’s clocks: the fact that from Le Le we cannot conclude that e e. A

vector clock for a system of N processes is an array of N integers. Each process keeps its own

vector clock, Vi , which it uses to timestamp local events. Like Lamport timestamps,

processes piggyback vector timestamps on the messages they send to one another, and there

are simple rules for updating the clocks:

VC1: Initially, Vij = 0 , for i j = 1 2 N .

VC2: Just before pi timestamps an event, it sets Vii :=Vii + 1. VC3:

pi includes the value t = Vi in every message it sends.

VC4: When pi receives a timestamp t in a message, it sets Vij := maxVij tj , for j = 1 2 N .

 Taking the componentwise maximum of two vector timestamps in this way is known as a

merge operation.For a vector clock Vi , Vii is the number of events that pi has

timestamped, and Vij j i is the number of events that have occurred at pj that have

potentially affected pi . (Process pj may have timestamped more events by this point, but no

information has flowed to pi about them in messages as yet.) Clocks, Events and Process

States

• A distributed system consists of a collection P of N processes pi, i = 1,2,… NEach

process pi

has a state si consisting of its variables (which it transforms as it executes) Processes

communicate only by messages (via a network)

DISTRIBUTED SYSTEMS AY 2025-26

Page 31

• Actions of processes: Send, Receive, change own state

• Event: the occurrence of a single action that a process carries out as it executes

– Events at a single process pi, can be placed in a total ordering denoted by the relation →i

between the events. i.e.e →i e’ if and only if event e occurs before event e’ at process pi

• A history of process pi: is a series of events ordered by →i – history(pi) = hi =<ei0, ei1,

ei2, …> clocks

To timestamp events, use the computer‘s clock • At real time, t, the OS reads the time on

the computer‘s hardware clock Hi(t)

• It calculates the time on its software clock Ci(t)=αHi(t) + β

– e.g. a 64 bit value giving nanoseconds since some base time

– Clock resolution: period between updates of the clock value

• In general, the clock is not completely accurate – but if Ci behaves well enough, it can be

used to timestamp events at pi

Skew between computer clocks in a distributed system

Computer clocks are not generally in perfect agreement

• Clock skew: the difference between the times on two clocks (at any instant)

• Computer clocks use crystal-based clocks that are subject to physical variations

– Clock drift: they count time at different rates and so diverge (frequencies of oscillation differ)

– Clock drift rate: the difference per unit of time from some ideal reference clock

– Ordinary quartz clocks drift by about 1 sec in 11-12 days. (10-6 secs/sec).

– High precision quartz clocks drift rate is about 10-7 or 10-8 secs/sec

Coordinated Universal Time (UTC)

• UTC is an international standard for time keeping

– It is based on atomic time, but occasionally adjusted to astronomical time

– International Atomic Time is based on very accurate physical clocks (drift rate 10-13)

• It is broadcast from radio stations on land and satellite (e.g.GPS)

• Computers with receivers can synchronize their clocks with these timing signals (by requesting

• time from GPS/UTC source)

DISTRIBUTED SYSTEMS AY 2025-26

Page 32

– Signals from land-based stations are accurate to about 0.1-10 millisecond

– Signals from GPS are accurate to about 1 microsecond

Synchronizing physical clocks

Two models of synchronization

• External synchronization: a computer‘s clock Ci is synchronized with an external

authoritative time source S, so that:

– |S(t) - Ci(t)| < D for i = 1, 2, …N over an interval, I of realtime

– The clocks Ci are accurate to within the bound D.

• Internal synchronization: the clocks of a pair of computers are synchronized with one

another so that:

– | Ci(t) - Cj(t)| < D for i = 1, 2, … N over an interval, I of realtime

– The clocks Ci and Cj agree within the bound D.

Internally synchronized clocks are not necessarily externally synchronized, as they may drift

collectively

– if the set of processes P is synchronized externally within a bound D, it is also internally

synchronized within bound 2D (worst case polarity)

Clock correctness

• Correct clock: a hardware clock H is said to be correct if its drift rate is within a bound ρ >

0 (e.g. 10-6 secs/ sec)

This means that the error in measuring the interval between real times t and

t’ is bounded:

– (1 - ρ) (t’ - t) ≤ H(t’) - H(t) ≤ (1 + ρ) (t’ - t) (where t’>t) Which forbids jumps in time

readings of hardware clocks

– Clock monotonicity: weaker condition of correctness – t' > t ⇒ C(t’) > C(t) e.g. required

by Unix

make

– A hardware clock that runs fast can achieve monotonicity by adjusting the values of α and

β

such that Ci(t)= αHi(t) + β

– Faulty clock: a clock not keeping its correctness condition crash failure - a clock stops

ticking

• arbitrary failure - any other failure e.g. jumps in time; Y2Kbug Synchronization in a

synchronous system

A synchronous distributed system is one in which the following bounds are defined he time

DISTRIBUTED SYSTEMS AY 2025-26

Page 33

To execute each step of a process has known lower and upper bounds each message

transmitted

 over a channel is received within a known bounded time (min and max) each process has a

 local clock whose drift rate from real time has a known bound.

Internal synchronization in a synchronous system

 One process p1 sends its local time t to process p2 in a message m

 p2 could set its clock to t + Ttrans where Ttrans is the time to transmit m

 Ttrans is unknown but min ≤ Ttrans ≤ max

 uncertainty u = max-min. Set clock to t + (max - min)/2 then skew ≤ u/2 Cristian‘s

method for an asynchronous system

 A time server S receives signals from a UTC source

 Process p requests time in mr and receives t in mt from S

 p sets its clock to t + Tround/2

 Accuracy ± (Tround/2 - min) :

 because the earliest time S puts t in message mt is min after p sent mr

 the latest time was min before mt arrived at p

 the time by S‘s clock when mt arrives is in the range [t+min, t + Tround - min]

 the width of the range is Tround + 2min

DISTRIBUTED SYSTEMS AY 2025-26

Page 34

The Berkeley algorithm

 Problem with Cristian‘s algorithm

 a single time server might fail, so they suggest the use of a

group of synchronized servers

 it does not deal with faulty servers

 Berkeley algorithm (also 1989)

 An algorithm for internal synchronization of a group of computers

 A master polls to collect clock values from the others (slaves)

 The master uses round trip times to estimate the slaves‘ clock values

 It takes an average (eliminating any above some average roundtrip

time or with faulty clocks)

 It sends the required adjustment to the slaves (better thansending

the time which depends on the round trip time)

 Measurements

 15 computers, clock synchronization 20-25 millisecs drift rate < 2x10-5

 If master fails, can elect a new master to take over (not in bounded time)

Network Time Protocol (NTP)

 A time service for the Internet - synchronizes clients to UTC Reliability from

redundant paths, scalable, authenticates time sources Architecture

 Primary servers are connected to UTC sources

 Secondary servers are synchronized to primary servers

 Synchronization subnet - lowest level servers in users‘ computers

 strata: the hierarchy level

DISTRIBUTED SYSTEMS AY 2025-26

Page 35

NTP - synchronization of servers

 The synchronization subnet can reconfigure if failures occur

 a primary that loses its UTC source can become a secondary

 a secondary that loses its primary can use another primary

 Modes of synchronization for NTP servers:

 Multicast

 A server within a high speed LAN multicasts time to others

which set clocks assuming some delay (not veryaccurate)

 Procedure call

 A server accepts requests from other computers (like

Cristian‘s algorithm)

 Higher accuracy. Useful if no hardware multicast.

Messages exchanged between a pair of NTP peers

 All modes use UDP

 Each message bears timestamps of recent events:

 Local times of Send and Receive of previous message

 Local times of Send of current message

 Recipient notes the time of receipt Ti (we have Ti-3, Ti-2, Ti-1, Ti)

 Estimations of clock offset and message delay

 For each pair of messages between two servers, NTP estimates an offset oi (between the

two clocks) and a delay di (total time for the two messages, which take t and t‘)

 Ti-2 = Ti-3 + t + o and Ti = Ti-1 + t‘ - o

 This gives us (by adding the equations) : di = t + t‘ = Ti-2 - Ti-3 + Ti - Ti-1

 Also (by subtracting the equations)

= oi + (t‘ - t)/2 where oi = (Ti-2 - Ti-3 + Ti-1 - Ti)/2

 Using the fact that t, t‘>0 it can be shown that

 oi - di /2 ≤ o ≤ oi + di /2 .

 Thus oi is an estimate of the offset and di is a measure of the accuracy

 Data filtering

 NTP servers filter pairs <oi, di>, estimating reliability from variation (dispersions),

allowing them to select peers; and synchronization based on the lowest dispersion

or min di ok

DISTRIBUTED SYSTEMS AY 2025-26

Page 36

 A relatively high filter dispersion represents relatively unreliabledata

 Accuracy of tens of milliseconds over Internet paths (1 ms onLANs)

Logical time and logical clocks

 Instead of synchronizing clocks, event ordering can be used

 If two events occurred at the same process pi (i = 1, 2, … N) then theyoccurred in the

order observed by pi, that is order →i

 when a message, m is sent between two processes, send(m) happened before receive(m)

 Lamport[1978] generalized these two relationships into the happened-before relation:

e →i e'

 HB1: if e →i e' in process pi, then e → e'

 HB2: for any message m, send(m) → receive(m)

 HB3: if e → e' and e' → e'', then e → e''

Lamport‘s logical clocks

 Each process pi has a logical clock Li

o a monotonically increasing software counter

o not related to a physical clock

 Apply Lamport timestamps to events with happened-beforerelation

o LC1: Li is incremented by 1 before each event at process pi

DISTRIBUTED SYSTEMS AY 2025-26

Page 37

o LC2:

o when process pi sends message m, it piggybacks t = Li

o when pj receives (m,t), it sets Lj := max(Lj, t) and applies LC1before

timestamping the event receive (m)

 e →e‘ implies L(e)<L(e‘), but L(e)<L(e') does not imply e→e‘

Totally ordered logical clocks

 Some pairs of distinct events, generated by different processes, may have numerically

identical Lamport timestamps

 Different processes may have same Lamport time

 Totally ordered logical clocks

 If e is an event occurring at pi with local timestamp Ti, and if e‘ is an event occurring at pj

with local timestamp Tj

 Define global logical timestamps for the events to be (Ti, i) and (Tj, j)

 Define (Ti, i) < (Tj, j) iff

 Ti < Tj or

 Ti = Tj and i < j

 No general physical significance since process identifiers are arbitrary

Vector clocks

 Shortcoming of Lamport clocks:

 L(e) < L(e') doesn't imply e → e'

 Vector clock: an array of N integers for a system of N processes

 Each process keeps its own vector clock Vi to timestamp local events

 Piggyback vector timestamps on messages

DISTRIBUTED SYSTEMS AY 2025-26

Page 38

 Rules for updating vector clocks:

 Vi[i]] is the number of events that pi has timestamped

 Viji] (j≠ i) is the number of events at pj that pi has been affected

by VC1: Initially, Vi[j] := 0 for pi, j=1.. N (N processes)

 VC2: before pi timestamps an event, Vi[i] := Vi[

i]+1 VC3: pi piggybacks t = Vi on every message

it sends

 VC4: when pi receives a timestamp t, it sets Vi[j] := max(Vi[j] , t[j]) for

 j=1..N (merge operation)

 Compare vector timestamps

 V=V‘ iff V[j] = V‘[j] for j=1..N

 V>=V‘ iff V[j] <= V‘[j] for j=1..N

 V<V‘ iff V<= V‘ ^ V!=V‘

 Figure 11.7 shows

 a→f since V(a) < V(f)

 c || e since neither V(c) <= V(e) nor V(e) <= V(c)

Global states

 How do we find out if a particular property is true in a distributed system? For examples,

we will look at:

 Distributed Garbage Collection

 Deadlock Detection

 Termination Detection

 Debugging

DISTRIBUTED SYSTEMS AY 2025-26

Page 39

Distributed Garbage Collection

 Objects are identified as garbage when there are no longer any references to them in

the system

 Garbage collection reclaims memory used by thoseobjects

 In figure 11.8a, process p2 has two objects that do not have any references to other

objects, but one object does have a reference to a message in transit. It is not garbage,

but the other p2 object is

 Thus we must consider communication channels as well as object references to

determine unreferenced objects

Deadlock Detection

 A distributed deadlock occurs when each of a collection of processes waits for

another process to send it a message, and there is a cycle in the graph of the waits-for

relationship

DISTRIBUTED SYSTEMS AY 2025-26

Page 40

 In figure 11.8b, both p1 and p2 wait for a message from the other, so both are blocked and

the system cannot continue

Coordination And Agreement

Introduction

 Fundamental issue: for a set of processes, how to coordinate their actions or to agree

on one or more values?

 even no fixed master-slave relationship between the components

 Further issue: how to consider and deal with failures when designing algorithms

 Topics covered

 mutual exclusion

 how to elect one of a collection of processes to perform a special role

 multicast communication

 agreement problem: consensus and byzantine agreement

Failure Assumptions and Failure Detectors

 Failure assumptions of this chapter

 Reliable communication channels

 Processes only fail by crashing unless stateotherwise

 Failure detector: object/code in a process that detects failures of other processes

 unreliable failure detector

 One of two values: unsuspected or suspected

 Evidence of possible failures

 Example: most practical systems

 Each process sends ―alive/I‘m here‖ message to everyone else

 If not receiving ―alive‖ message after timeout, it‘s suspected

 maybe function correctly, but network partitioned

 reliable failure detector

 One of two accurate values: unsuspected or failure – few practical systems

DISTRIBUTED SYSTEMS AY 2025-26

Page 41

12.2 Distributed Mutual Exclusion

 Process coordination in a multitasking OS

 Race condition: several processes access and manipulate the same data concurrently

and the outcome of the execution depends on the particular order in which the access

take place

 critical section: when one process is executing in a critical section, no other process is

to be allowed to execute in its critical section

 Mutual exclusion: If a process is executing in its critical section, then no other processes

can be executing in their critical sections

 Distributed mutual exclusion

 Provide critical region in a distributed environment

 message passing

 for example, locking files, locked daemon in UNIX (NFS is stateless, no file-locking at

the NFS level)

Algorithms for mutual exclusion

 Problem: an asynchronous system of N processes

 processes don't fail

 message delivery is reliable; not share variables

 only one critical region

 application-level protocol: enter(), resourceAccesses(), exit()

 Requirements for mutual exclusion

 Essential

 [ME1] safety: only one process at a time

 [ME2] liveness: eventually enter or exit

 Additional

 [ME3] happened-before ordering: ordering of enter() is the same as HB ordering

 Performance evaluation

 overhead and bandwidth consumption: # of messages sent

 client delay incurred by a process at entry and exit

 throughput measured by synchronization delay: delay between one's exit and

next's entry

A central server algorithm

 server keeps track of a token---permission to enter critical region

DISTRIBUTED SYSTEMS AY 2025-26

Page 42

 a process requests the server for the token

 the server grants the token if it has the token

 a process can enter if it gets the token, otherwise waits when done, a

 process sends release and exits

A central server algorithm: discussion

 Properties

 safety, why?

 liveness, why?

 HB ordering not guaranteed, why?

 Performance

 enter overhead: two messages (request and grant)

 enter delay: time between request and grant

 exit overhead: one message (release)

 exit delay: none

 synchronization delay: between release and grant

 centralized server is the bottleneck

A ring-based algorithm

 Arrange processes in a logical ring to rotate a token

 Wait for the token if it requires to enter the critical section

 The ring could be unrelated to the physical configuration

 pi sends messages to p(i+1) mod N

 when a process requires to enter the critical section, waits for the token

 when a process holds the token

 If it requires to enter the critical section, it can enter

DISTRIBUTED SYSTEMS AY 2025-26

Page 43

 when a process releases a token (exit), it sends to its neighbor

 If it doesn‘t, just immediately forwards the token to its neighbor

An algorithm using multicast and logical clocks

 Multicast a request message for the token (Ricart and Agrawala [1981])

 enter only if all the other processes reply

 totally-ordered timestamps: <T, pi >

 Each process keeps a state: RELEASED, HELD, WANTED

 if all have state = RELEASED, all reply, a process can hold the token and enter

 if a process has state = HELD, doesn't reply until it exits

 if more than one process has state = WANTED, process with the lowest timestamp will

get all

DISTRIBUTED SYSTEMS AY 2025-26

Page 44

An algorithm using multicast: discussion

 •Properties

 safety, why?

 liveness, why?

 HB ordering, why?

 Performance

 bandwidth consumption: no token keeps circulating

 entry overhead: 2(N-1), why? [with multicast support: 1 + (N -1) = N]

 entry delay: delay between request and getting all replies

 exit overhead: 0 to N-1 messages

 exit delay: none

 synchronization delay: delay for 1 message (one last reply from the previous holder)

Maekawa‘s voting algorithm

 •Observation: not all peers to grant it access

 Only obtain permission from subsets, overlapped by any two processes

 •Maekawa‘s approach
 subsets Vi,Vj for process Pi, Pj

 Pi ∈ Vi, Pj ∈ Vj

 Vi ∩ Vj ≠ ∅ , there is at least one common member
 subset |Vi|=K, to be fair, each process should have the same size

 Pi cannot enter the critical section until it has received all K reply messages

 Choose a subset

DISTRIBUTED SYSTEMS AY 2025-26

Page 45

 Simple way (2√N): place processes in a √N by √N matrix and let Vi be the union of the
row and column containing Pi

 If P1, P2 and P3 concurrently request entry to the critical section, then its possiblethat

each process has received one (itself) out of two replies, and none can proceed

 adapted and solved by [Saunders 1987]

Elections

Election: choosing a unique process for a particular role

 All the processes agree on the unique choice

 For example, server in dist. Mutex assumptions

 Each process can call only one election at a time multiple concurrent elections can be
called by different processes

 Participant: engages in an election each process pi has variable electedi = ? (don't know)

initially process with the largest identifier wins.
 The (unique) identifier could be any useful value Properties

 [E1] electedi of a ―participant‖ process must be P (elected process=largestid) or ⊥
(undefined)

 [E2] liveness: all processes participate and eventually set electedi != ⊥(or crash)

Performance

 overhead (bandwidth consumption): # of messages

 turnaround time: # of messages to complete an election

A ring-based election algorithm

 Arrange processes in a logical ring

o pi sends messages to p(i+1) mod N

o It could be unrelated to the physical configuration

o Elect the coordinator with the largest id

DISTRIBUTED SYSTEMS AY 2025-26

Page 46

o Assume no failures
 Initially, every process is a non-participant. Any process can call an election

o Marks itself as participant

o Places its id in an election message
o Sends the message to its neighbor
o Receiving an election message

 if id > myid, forward the msg, mark participant
 if id < myid

o non-participant: replace id with myid: forward the msg, mark participant
o participant: stop forwarding (why? Later, multiple elections)

 if id = myid, coordinator found, mark non-participant, electedi := id, send elected

o message with myid
o Receiving an elected message

 id != myid, mark non-participant, electedi := id forward the msg
 if id = myid, stop forwarding

Figure 12.7 A ring-based election in progress

 Receiving an election message:

 if id > myid, forward the msg, mark participant

 if id < myid

 non-participant: replace id with myid: forward the msg, mark participant

 participant: stop forwarding (why? Later, multiple elections)

 if id = myid, coordinator found, mark non-participant, electedi := id, send elected

message with myid

 Receiving an elected message: – id != myid, mark non-participant,

 electedi := id forward the msg

 if id = myid, stop forwarding

A ring-based election algorithm: discussion

 •Properties

DISTRIBUTED SYSTEMS AY 2025-26

Page 47

 safety: only the process with the largest id can send an elected message

 liveness: every process in the ring eventually participates in the election; extra

elections are stopped

 Performance

 one election, best case, when?

 N election messages

 N elected messages

 turnaround: 2N messages

 one election, worst case, when?

 2N - 1 election messages

 N elected messages

 turnaround: 3N - 1 messages

 can't tolerate failures, not very practical

The bully election algorithm

• Assumption

– Each process knows which processes have higher identifiers, and that it can communicate

with all such processes

• Compare with ring-based election

– Processes can crash and be detected by timeouts

• synchronous

• timeout T = 2Ttransmitting (max transmission delay) + Tprocessing (max processing

delay)

• Three types of messages

– Election: announce an election

– Answer: in response to Election

– Coordinator: announce the identity of the elected process The bully election algorithm:

how to

• Start an election when detect the coordinator has failed or begin to replace the coordinator,

which has lower identifier

– Send an election message to all processes with higher id's and waits for answers

(exceptthe failed coordinator/process)

• If no answers in time T

– Considers it is thecoordinator

DISTRIBUTED SYSTEMS AY 2025-26

Page 48

– sends coordinator message (with its id) to all processes with lower id's

• else

– waits for a coordinator message and starts an election if T‘ timeout

– To be a coordinator, it has to start an election

• A higher id process can replace the current coordinator (hence ―bully‖)

– The highest one directly sends a coordinator message to all process with lower identifiers

• Receiving an election message

– sends an answer message back

– starts an election if it hasn't started one—send election messages to all higher-id processes

(including the ―failed‖ coordinator—the coordinator might be up by now)

• Receiving a coordinator message – set electedi to the new coordinator

The bully election algorithm: discussion

 Properties

 safety:

 a lower-id process always yields to a higher-id process

 However, it‘s guaranteed

 if processes that have crashed are replaced by processes with the same identifier since

message delivery order might not be guaranteed and

 failure detection might be unreliable

 liveness: all processes participate and know the coordinator at the end

 Performance

DISTRIBUTED SYSTEMS AY 2025-26

Page 49

 best case: when?

 overhead: N-2 coordinator messages

 turnaround delay: no election/answer messages

Multicast Communication

 Group (multicast) communication: for each of a groupof processes to receive copies

of the messages sent to the group, often with deliveryguarantees

 The set of messages that every process of the group shouldreceive

 On the delivery ordering across the group members

 Challenges

 Efficiency concerns include minimizing overhead activities and increasing

throughput and bandwidth utilization

 Delivery guarantees ensure that operations are completed

 Types of group

 Static or dynamic: whether joining or leaving is considered Closed or open

 A group is said to be closed if only members of the group can multicast to it. Reliable

Multicast

 Simple basic multicasting (B-multicast) is sending a message to every process that is a

member of a defined group

 B-multicast (g, m) for each process p ∈ group g, send (p, message m)

 On receive (m) at p: B-deliver (m) at p

 Reliable multicasting (R-multicast) requires these properties

 Integrity: a correct process sends a message to only a member of the group

 Validity: if a correct process sends a message, it will eventually bedelivered

 Agreement: if a message is delivered to a correct process, all other correct processes

in the group will deliver it

DISTRIBUTED SYSTEMS AY 2025-26

Page 50

Types of message ordering Three types of message ordering

– FIFO (First-in, first-out) ordering: if a correct process delivers a message

beforeanother, every correct process will deliver the first message before the other

– Casual ordering: any correct process that delivers the second message will deliver the

previous message first

– Total ordering: if a correct process delivers a message before another, any other correct

process that delivers the second message will deliver the first message first

• Note that

– FIFO ordering and casual ordering are only partial orders

– Not all messages are sent by the same sending process

– Some multicasts are concurrent, not able to be ordered by happened before

– Total order demands consistency, but not a particular order Figure 12.12 Total, FIFO

and causal ordering of multicast messages

DISTRIBUTED SYSTEMS AY 2025-26

Page 51

Notice

 the consistent ordering of totally ordered messages T1 and T2,

 the FIFO-related messages F1 and F2 and

 the causally related messages C1 and C3 and

 the otherwise arbitrary delivery ordering ofmessages

Note that T1 and T2 are delivered in opposite order to the physical time of message creation

Bulletin board example (FIFO ordering)

• A bulletin board such as Web Board at NJIT illustrates the desirability of consistency and

FIFO ordering. A user can best refer to preceding messages if they are delivered in order.

Message 25 in Figure 12.13 refers to message 24, and message 27 refers to message 23.

• Note the further advantage that Web Board allows by permitting messages to begin

threads by replying to a particular message. Thus messages do not have to be displayed in

the same order they are delivered

DISTRIBUTED SYSTEMS AY 2025-26

Page 52

Implementing total ordering

• The normal approach to total ordering is to assign totally ordered identifiers tomulticast

messages, using the identifiers to make ordering decisions.

• One possible implementation is to use a sequencer process to assign identifiers. See Figure

12.14. A drawback of this is that the sequencer can become a bottleneck.

• An alternative is to have the processes collectively agree on identifiers. A simple

algorithmis shown in Figure 12.15.

Figure 12.15 The ISIS algorithm for total ordering

DISTRIBUTED SYSTEMS AY 2025-26

Page 53

Each process q in group g keeps

• Aq g: the largest agreed sequence number it has observed so far for the group g

• Pq g: its own largest proposed sequence number Algorithm for process p to multicast a

message m to group g

1. B-multicasts <m, i> to g, where i is a unique identifier for m

2. Each process q replies to the sender p with a proposal for the message‘s agreed sequence

number of Pq g :=Max(Aq g, Pq g)+1

3. Collects all the proposed sequence numbers and selects the largest one a as the next

agreed sequence number. It then B-multicasts <i, a> to g.

4. Each process q in g sets Aq g := Max(Aq g, a) and attaches a to the message identified by

i Implementing casual ordering

• Causal ordering using vector timestamps (Figure 12.16)

– Only orders multicasts, and ignores one-to-one messages between processes

– Each process updates its vector timestamp before delivering a message to maintain the

count of precedent messages

Consensus and related problems

• Problems of agreement

– For processes to agree on a value (consensus) after one or more of the processes has

proposed what that value should be

– Covered topics: byzantine generals, interactive consistency, totally ordered multicast

• The byzantine generals problem: a decision whether multiple armies should attack or

retreat, assuming that united action will be more successful than some attacking and some

retreating

• Another example might be space ship controllers deciding whether to proceed or abort.

Failure handling during consensus is a key concern

DISTRIBUTED SYSTEMS AY 2025-26

Page 55

• Assumptions

– communication (by message passing) is reliable

– processes may fail

• Sometimes up to f of the N processes are faulty Consensus Process

1. Each process pi begins in an undecided state and proposes a single value vi, drawn from a

set D (i=1…N)

2. Processes communicate with each other, exchanging values

3. Each process then sets the value of a decision variable di and enters the decided state

Requirements for Consensus

• Three requirements of a consensus algorithm

– Termination: Eventually every correct process sets its decision variable

– Agreement: The decision value of all correct processes is the same: if pi and pj are

correctand have entered the decided state, then di=dj

(i,j=1,2, …, N)

– Integrity: If the correct processes all proposed the same value, then any correct process

inthe

decided state has chosen that value The byzantine generals problem

• Problem description

– Three or more generals must agree to attack or to retreat

– One general, the commander, issues the order

– Other generals, the lieutenants, must decide to attack or retreat

DISTRIBUTED SYSTEMS AY 2025-26

Page 56

– One or more generals may be treacherous

• A treacherous general tells one general to attack and another to retreat

• Difference from consensus is that a single process supplies the value to agree on

• Requirements

– Termination: eventually each correct process sets its decision variable

– Agreement: the decision variable of all correct processes is the same

– Integrity: if the commander is correct, then all correct processes agree on the value that the

commander has proposed (but the commander need not be correct)

The interactive consistency problem

• Interactive consistency: all correct processes agree on a vector of values, one for each

process.

This is called the decision vector

– Another variant of consensus

• Requirements

– Termination: eventually each correct process sets its decision variable

– Agreement: the decision vector of all correct processes is the same

– Integrity: if any process is correct, then all correct processes decide the correct value for

that process

Relating consensus to other problems

• Consensus (C), Byzantine Generals (BG), and Interactive Consensus (IC) are all problems

concerned with making decisions in the context of arbitrary or crash failures

• We can sometimes generate solutions for one problem in terms of another. For example

– We can derive IC from BG by running BG N times, once for each process with

thatprocess acting as commander

– We can derive C from IC by running IC to produce a vector of values at each process, then

– applying a function to the vector‘s values to derive a single value.

– We can derive BG from C by

• Commander sends proposed value to itself and each remaining process

• All processes run C with received values

• They derive BG from the vector of C values Consensus in a Synchronous System

• Up to f processes may have crash failures, all failures occurring during f+1 rounds.

During each round, each of the correct processes multicasts the values amongthemselves

• The algorithm guarantees all surviving correct processes are in a position to agree

DISTRIBUTED SYSTEMS AY 2025-26

Page 57

• Note: any process with f failures will require at least f+1 rounds to

agree Limits for solutions to Byzantine Generals

• Some cases of the Byzantine Generals problems have no solutions

– Lamport et al found that if there are only 3 processes, there is no solution

– Pease et al found that if the total number of processes is less than three

times the number of failures plus one, there is no solution

• Thus there is a solution with 4 processes and 1 failure, if there are two rounds

– In the first, the commander sends the values

– while in the second, each lieutenant sends the values it received

DISTRIBUTED SYSTEMS AY 2025-26

Page 58

Figure 12.20 Four Byzantine generals

Asynchronous Systems

• All solutions to consistency and Byzantine generals problems are limited to synchronous

systems

• Fischer et al found that there are no solutions in an asynchronous system with even one

failure

• This impossibility is circumvented by masking faults or using failure detection

• There is also a partial solution, assuming an adversary process, based on introducing

random values in the process to prevent an effective thwarting strategy. This does not

always reach consensus

DISTRIBUTED SYSTEMS AY 2025-26

Page 59

UNIT III

 Inter Process Communication: Introduction, characteristics of inter process

communication, External Data Representation and Marshalling, Client-Server

Communication, Group Communication, Distributed Objects and Remote Invocation:

Introduction, Communication between Distributed Objects, Remote Procedure Call,

Events and Notifications,

 The characteristics of inter process communication

 Message passing between a pair of processes can be supported by two message

communication operations, send and receive, defined in terms of destinations and messages.

To communicate, one process sends a message (a sequence of bytes) to a destination and

another process at the destination receives the message. This activity involves the

communication of data from the sending process to the receiving process and may involve

the synchronization of the two processes.

Synchronous and asynchronous communication • A queue is associated with each message

destination. Sending processes cause messages to be added to remote queues and receiving

processes remove messages from local queues. Communication between the sending and

receiving processes may be either synchronous or asynchronous. In the synchronous form of

communication, the sending and receiving processes synchronize at every message. In this

case,both send and receive are blocking operations. Whenever a send is issued the sending

process (or thread) is blocked until the corresponding receive is issued. Whenever a receive

is issued by a process (or thread), it blocks until a message arrives.

 In the asynchronous form of communication, the use of the send operation is nonblocking in

that the sending process is allowed to proceed as soon as the message has been copied to a

local buffer, and the transmission of the message proceeds in parallel with the sending

process. The receive operation can have blocking and non-blocking variants. In the non-

blocking variant, the receiving process proceeds with its program after issuing a receive

operation, which provides a buffer to be filled in the background, but it must separately

receive notification that its buffer has

been filled, by polling or interrupt.

In a system environment such as Java, which supports multiple threads in a single process, the

blocking receive has no disadvantages, for it can be issued by one thread while other

threads

DISTRIBUTED SYSTEMS AY 2025-26

Page 60

the process remain active, and the simplicity of synchronizing the receiving threads with the

incoming message is a substantial advantage. Non-blocking communication appears to be

more efficient, but it involves extra complexity in the receiving process associated with the

need to acquire the incoming message out of its flow of control. For these reasons, today’s

systems do not generally provide the nonblocking form of receive.

Message destinations • Chapter 3 explains that in the Internet protocols, messages are sent

to (Internet address, local port) pairs. A local port is a message destination within a

computer, specified as an integer. A port has exactly one receiver but can have many

senders. Processes may use multiple ports to receive messages. Any process that knows the

number of a port can send a message to it. Servers generally publicize their port numbers for

use by clients.

Reliability • As far as the validity property is concerned, a point-to-point message service

can be described as reliable if messages are guaranteed to be delivered despite a

‘reasonable’ number of packets being dropped or lost. In contrast, a point-to-point message

service can be describedas unreliable if messages are not guaranteed to be delivered in the

face of even a single packet dropped or lost. For integrity, messages must arrive uncorrupted

and without duplication.

Ordering • Some applications require that messages be delivered in sender order – that is,

the order in which they were transmitted by the sender. The delivery of messages out of

sender order is regarded as a failure by such applications.

Sockets

Both forms of communication (UDP and TCP) use the socket abstraction, which provides an

endpoint for ommunication between processes. Sockets originate from BSD UNIX but are

also present in most other versions of UNIX, including Linux as well as Windows and the

Macintosh

OS. Interprocess communication consists of transmitting a message between a socket in one

process and a socket in another process, is shown in the following figure.

DISTRIBUTED SYSTEMS AY 2025-26

Page 61

For a process to receive messages, its socket must be bound to a local port and one of the

Internet addresses of the computer on which it runs. Messages sent to a particular Internet

address and port number can be received only bya process whose socket is associated with

that Internet address and port number. Processes may use the same socket for sending and

receiving messages. Each computer has a large number(216) of possible port numbers for use

by local processes for receiving messages. Any processmay make use of multiple ports to

receive messages, but a process cannot share ports with other processes on the same

computer. However, any number of processes may send messages to the same port. Each

socket is associated with a particular protocol – either UDP or TCP.

Java API for Internet addresses • As the IP packets underlying UDP and TCP are sent

to Internet addresses, Java provides a class, InetAddress, that represents Internet addresses.

Users of this class refer to computers by Domain Name System (DNS) hostnames. For

example, instances of InetAddress that contain Internet addresses can be created by calling a

static method of InetAddress, giving a DNS hostname as the argument. The method uses the

DNS to get the corresponding Internet address. For example, to get an object representing the

Internet address of the host whose DNS name is bruno.dcs.qmul.ac.uk, use:

InetAddress aComputer = InetAddress.getByName("bruno.dcs.qmul.ac.uk");

This method can throw an UnknownHostException. Note that the user of the class does

not need to state the explicit value of an Internet address. In fact, the class encapsulates the

details of the representation of Internet addresses. Thus the interface for this class is not

dependent on the number of bytes needed to represent Internet addresses – 4 bytes in IPv4

and 16 bytes in IPv6.

UDP datagram communication

A datagram sent by UDP is transmitted from a sending process to a receiving process

without acknowledgement or retries. If a failure occurs, the message may not arrive. A

datagram is transmitted between processes when one process sends it and another receives it.

To send or receive messages a process must first create a socket bound to an

Internet address of the local host and a local port. A server will bind its socket to a server

port – one that it makes known to clients so that they can send messages to it. A client binds

its socket to any free local port. The receive method returns the Internet address and port of

the sender, in addition to the message, allowing the recipient to send a reply.

The following are some issues relating to datagram communication:

DISTRIBUTED SYSTEMS AY 2025-26

Page 62

Message size: The receiving process needs to specify an array of bytes of a particular size

in which to receive a message. If the message is too big for the array, it is truncated on

arrival. The underlying IP protocol allows packet lengths of up to 216 bytes, which includes

the headers as well as the message. However, most environments impose a size restriction of

8 kilobytes. Any application requiring messages larger than the maximum must fragment

them into chunks of that size.

Generally, an application, for example DNS, will decide on a size that is not excessively

large but is adequate for its intended use.

Blocking: Sockets normally provide non-blocking sends and blocking receives for

datagram communication (a non-blocking receive is an option in some implementations).

The send operation returns when it has handed the message to the underlying UDP and IP

protocols, which are responsible for transmitting it to its destination. On arrival, the message

is placed in a queue for the socket that is bound to the destination port. The message can be

collected from the queue by an outstanding or future invocation of receive on that socket.

Messages are discarded at the destination if no process already has a socket bound to the

destination port.

Timeouts: The receive that blocks forever is suitable for use by a server that is waiting to

receive requests from its clients. But in some programs, it is not appropriate that a process

that has invoked a receive operation should wait indefinitely in situations where the sending

process may have crashed or the expected message may have been lost. To allow for such

requirements, timeouts can be set on sockets. Choosing an appropriate timeout interval is

difficult, but it should be fairly large in comparison with the time required to transmit a

message.

Receive from any: The receive method does not specify an origin for messages. Instead,

an invocation of receive gets a message addressed to its socket from any origin. The receive

method returns the Internet address and local port of the sender, allowing the recipient to

check where the message came from. It is possible to connect a datagram socket to a

particular remote port and Internet address, in which case the socket is only able to send

messages to and receive messages from that address.

Failure model for UDP datagrams • A failure model for communication channels and

defines reliable communication in terms of two properties: integrity and validity. The

integrity property requires that messages should not be corrupted or duplicated. The use of a

checksum ensures that there is a negligible probability that any message received is

DISTRIBUTED SYSTEMS AY 2025-26

Page 63

corrupted. UDP datagrams suffer from the following failures:

Omission failures: Messages may be dropped occasionally, either because of a checksum

error or because no buffer space is available at the source or destination. To simplify the

discussion, we regard send-omission and receive-omission failures as omission failures in the

communication channel.

Ordering: Messages can sometimes be delivered out of sender order. Applications using

UDP datagrams are left to provide their own checks to achieve the quality of reliable

communication they require.

A reliable delivery service may be constructed from one that suffers from omission

failures by the use of acknowledgements.

Use of UDP • For some applications, it is acceptable to use a service that is liable to

occasional omission failures. For example, the Domain Name System, which looks up DNS

names in the Internet, is implemented over UDP. Voice over IP (VOIP) also runs over UDP.

UDP datagrams are sometimes an attractive choice because they do notsuffer from the

overheads associated with guaranteed message delivery. There are three main sources of

overhead:

• the need to store state information at the source and destination;

• the transmission of extra messages;

• latency for the sender.

 Java API for UDP datagrams • The Java API provides datagram communication by

means of two classes: DatagramPacket and DatagramSocket. DatagramPacket:

This class provides a constructor that makes an instance out of an array of bytes

comprising a message, the length of the message and the Internet address and local port

number of the destination socket, as follows:

Datagram packet

 array of bytes containing message length of message Internet address port number

An instance of Datagram Packet may be transmitted between processes when one process

sends

it and another receives it. UDP server repeatedly receives a request and send sit back to

the client

DISTRIBUTED SYSTEMS AY 2025-26

Page 64

DatagramSocket: This class supports sockets for sending and receiving UDP datagrams. It

provides a constructor that takes a port number as its argument, for use by processes that

need to use a particular port. It also provides a no-argument constructor that allows the

system to choose a free local port. These constructors can throw a SocketException if the

chosen port is already in use or if a reserved port (a number below 1024) is specified when

running over UNIX.

UDP server repeatedly receives a request and sends it back to the client

DISTRIBUTED SYSTEMS AY 2025-26

Page 65

TCP stream communication

The API to the TCP protocol, which originates from BSD 4.x UNIX, provides the

abstraction of a stream of bytes to which data may be written and from which data may be

read. The following characteristics of the network are hidden by the stream abstraction:

Message sizes: The application can choose how much data it writes to a stream or reads from

it.It may deal in very small or very large sets of data. The underlying implementation of a

TCP stream decides how much data to collect before transmitting it as one or more IP

packets. On arrival, the data is handed to the application as requested. Applications can, if

necessary, force data to be sent immediately.

Lost messages: The TCP protocol uses an acknowledgement scheme. As an example of a

simple scheme (which is not used in TCP), the sending end keeps a record of each IP packet

sent and the receiving end acknowledges all the arrivals. If the sender does not receive an

acknowledgement within a timeout, it retransmits the message. The more sophisticated

sliding window scheme [Comer 2006] cuts down on the number of acknowledgement

messages required.

Flow control: The TCP protocol attempts to match the speeds of the processes that read from

and write to a stream. If the writer is too fast for the reader, then it is blocked until the reader

has consumed sufficient data.

DISTRIBUTED SYSTEMS AY 2025-26

Page 66

Message duplication and ordering: Message identifiers are associated with each IP packet,

which enables the recipient to detect and reject duplicates, or to reorder messages that do not

arrive in sender order.

Message destinations: A pair of communicating processes establish a connection before they

can communicate over a stream. Once a connection is established, the processes simply read

from and write to the stream without needing to use Internet addresses and ports.

Establishing a connection involves a connect request from client to server followed by an

accept request from server to client before any communication can take place. This could be

a considerable overhead for a single client-server request and reply.

Java API for TCP streams • The Java interface to TCP streams is provided in the

classes

ServerSocket and Socket:

ServerSocket: This class is intended for use by a server to create a socket at a server port for

listening for connect requests from clients. Its accept method gets a connect request from the

queue or, if the queue is empty, blocks until one arrives. The result of executing accept is an

instance of Socket – a socket to use for communicating with the client.

Socket: This class is for use by a pair of processes with a connection. The client uses a

constructor to create a socket, specifying the DNS hostname and port of a server. This

constructor not only creates a socket associated with a local port but also connects it to the

specified remote computer and port number. It can throw an Unknown Host Exception if the

hostname is wrong or an IOException if an IO error occurs.

TCP client makes connection to server, sends request and receives reply

DISTRIBUTED SYSTEMS AY 2025-26

Page 67

TCP server makes a connection for each client and then echoes the client’s request

DISTRIBUTED SYSTEMS AY 2025-26

Page 68

DISTRIBUTED SYSTEMS AY 2025-26

Page 73

 External data representation and marshalling

The information stored in running programs is represented as data structures – for example, by

sets of interconnected objects – whereas the information in messages consists of sequences of

bytes. Irrespective of the form of communication used, the data structures must be flattened

(converted to a sequence of bytes) before transmission and rebuilt on arrival. The individual

primitive data items transmitted in messages can be data values of many different types, and

not all computers store primitive values such as integers in the same order. The representation

of floating-point numbers also differs between architectures. There are two variants for the

ordering of integers: the so-called big-endian order, in which the most significant byte comes

first; and little-endian order, in which it comes last. Another issue is the set of codes used to

represent characters: for example, the majority of applications on systems such as UNIX use

ASCII character coding, taking one byte per character, whereas the Unicode standard allows

for the representation of texts in many different languages and takes two bytes per character.

One of the following methods can be used to enable any two computers to exchange binary

data values:

• The values are converted to an agreed external format before transmission and converted

to the local form on receipt; if the two computers are known to be the same type, the

conversion to external format can be omitted.

• The values are transmitted in the sender’s format, together with an indication of the

format used, and the recipient converts the values if necessary. Note, however, that bytes

themselves are never altered during transmission. To support RMI or RPC, any data type that

can be passed as an argument or returned as a result must be able to be flattened and the

individual primitive data values represented in an agreed format. An agreed standard for the

representation of data structures and primitive values is called an external data representation.

Marshalling is the process of taking a collection of data items and assembling them into a

form suitable for transmission in a message. Unmarshalling is the process of disassembling

them on arrival to produce an equivalent collection of data items at the destination. Thus

marshalling consists of the translation of structured data items and

primitive values into an external data representation. Similarly, unmarshalling consists of the

generation of primitive values from their external data representation and the rebuilding of the

data structures.

DISTRIBUTED SYSTEMS AY 2025-26

Page 70

Three alternative approaches to external data representation and marshalling are discussed:

• CORBA’s common data representation, which is concerned with an external

representation for the structured and primitive types that can be passed as the arguments and

results of remote method invocations in CORBA. It can be used by a variety of programming

languages.

• Java’s object serialization, which is concerned with the flattening and external data

representation of any single object or tree of objects that may need to be transmitted in a

message or stored on a disk. It is for use only by Java.

• XML (Extensible Markup Language), which defines a textual fomat for representing

structured data. It was originally intended for documents containing textual self-describing

structured data – for example documents accessible on the Web – but it is now also used to

represent the data sent in messages exchanged by clients and servers in web services.

In the first two cases, the marshalling and unmarshalling activities are intended to be carried

out by a middleware layer without any involvement on the part of the application

programmer. Even in the case of XML, which is textual and therefore more accessible to

hand-encoding, software for marshalling and unmarshalling is available for all commonly

used platforms and programming environments. Because marshalling requires the

consideration of all the finest details of the representation of the primitive components of

composite objects, the process is likely to be error-prone if carried out by hand. Compactness

is another issue that can be addressed in the design of automatically generated marshalling

procedures.

In the first two approaches, the primitive data types are marshalled into a binary form. In

the third approach (XML), the primitive data types are represented textually. The textual

representation of a data value will generally be longer than the equivalent binary

representation. The HTTP protocol, which is described in Chapter 5, is another example of the

textualapproach. Another issue with regard to the design of marshalling methods is whether

the marshalled data should include information concerning the type of its contents. For

example, CORBA’s representation includes just the values of the objects transmitted, and

nothing about their types. On the other hand, both Java serialization and XML do include type

information, but in different ways. Java puts all of the required type information into the

serialized form, but XML documents may refer to externally defined sets of names (with

types) called namespaces.

Although we are interested in the use of an external data representation for the arguments and

results of RMIs and RPCs, it does have a more general use for representing data structures,

objects or structured documents in a form suitable for transmission in messages or storing in

DISTRIBUTED SYSTEMS AY 2025-26

Page 71

files.

CORBA CDR for constructed types

COBRBA’s Common Data Representation (CDR)

CORBA CDR is the external data representation defined with CORBA 2.0. CDR can

represent all of the data types that can be used as arguments and return values in remote

invocations in CORBA. These consist of 15 primitive types, which include short (16-bit),

long (32-bit), unsigned short, unsigned long, float (32-bit), double (64-bit), char, boolean

(TRUE, FALSE), octet (8-bit), and any (which can represent any basic or constructed type);

together with a range of composite types, which are described in Figure 4.7. Each argument

or result in a remote invocation is

represented by a sequence of bytes in the invocation or result message.

Marshalling in CORBA • Marshalling operations can be generated automatically from the

specification of the types of data items to be transmitted in a message. The types of the data

structures and the types of the basic data items are described in CORBA IDL (see Section

8.3.1), which provides a notation for describing the types of the arguments and results of

RMI methods.

DISTRIBUTED SYSTEMS AY 2025-26

Page 72

Java object serialization

In Java RMI, both objects and primitive data values may be passed as arguments and results

of method invocations. An object is an instance of a Java class. For example, the Java class

equivalent to the Person struct defined in CORBA IDL might be:

public class Person implements Serializable { private String name;

private String place; private int year;

public Person(String aName, String aPlace, int aYear) {name = aName; place = aPlace;

year = aYear;

}

// followed by methods for accessing the instance variables

}

Extensible Markup Language (XML)

XML is a markup language that was defined by the World Wide Web Consortium (W3C) for

general use on the Web. In general, the term markup language refers to a textual encoding

that represents both a text and details as to its structure or its appearance. Both XML and

HTML were derived from SGML (Standardized Generalized Markup Language) [ISO

8879], a very complex markup language. HTML was designed for defining the appearance

of web pages. XML was designed for writing structured documents for the Web.

XML data items are tagged with ‘markup’ strings. The tags are used to describe the logical

structure of the data and to associate attribute-value pairs with logical structures. That is, in

XML, the tags relate to the structure of the text that they enclose, in contrast to HTML, in

which the tags specify how a browser could display the text. For a specification of XML, see

the pages on XML provided by W3C [www.w3.org VI].

XML is used to enable clients to communicate with web services and for defining the

interfaces and other properties of web services. However, XML is also used in many other

ways, including in archiving and retrieval systems – although an XML archive may be larger

than a binary one, it has the advantage of being readable on any computer.

Other examples of uses of XML include for the specification of user interfaces and the

encoding of configuration files in operating systems.

XML is extensible in the sense that users can define their own tags, in contrast to HTML,

which uses a fixed set of tags. However, if an XML document is intended to be used by more

than one application, then the names of the tags must be agreed between them. For example,

clients usually use SOAP messages to communicate with web

services. SOAP is an XML format whose tags are published for use by web services and their
clients.

Some external data representations (such as CORBA CDR) do not need to be self describing,

because it is assumed that the client and server exchanging a message have prior knowledge

of the order and the types of the information it contains. However, XML was intended to be

used by multiple applications for different purposes. The provision of tags, together with the

use of namespaces to define the meaning of the tags, has made this possible. In addition, the

use of tags enables applications to select just those parts of a document it needs to

process: it will not be

http://www.w3.org/

DISTRIBUTED SYSTEMS AY 2025-26

Page 73

affected by the addition of information relevant to other applications.

-

XML definition of the Person structure

Remote object references

Java and CORBA that support the distributed object model. It is not relevant to XML. When

a client invokes a method in a remote object, an invocation message is sent to the server

process that hosts the remote object. This message needs to specify which particular object is

to have its method invoked. A remote object reference is an identifier for a remote object that

is valid throughout a distributed system. A remote object reference is passed in the

invocation message to specify which object is to be invoked. Chapter 5 explains that remote

object references are also passed as arguments and returned as results of remote method

invocations, that each remote object has a single remote object reference and that remote

object references can be compared to see whether they refer to the same remote object. Here,

we discuss the external representation of remote object references.

Client-server communication

public byte[] doOperation (RemoteObjectRef o, int methodId, byte[] arguments) sends a
request message to the remote object and returns the reply.

The arguments specify the remote object, the method to be invoked and the arguments of that

method.

public byte[] getRequest (); acquires a client request via the server port.

public void sendReply (byte[] reply, InetAddress clientHost, int clientPort); sends the reply
message reply to the client at its Internet address and port.

RPC exchange protocols

HTTP request message

HTTP reply message

DISTRIBUTED SYSTEMS AY 2025-26

Page 74

Request-reply communication

Group communication

A multicast operation is more appropriate – this is an operation that sends a single message

from one process to

each of the members of a group of processes, usually in such a way that the membership of

the group is transparent to the sender. There is a range of possibilities in the desired

behaviour of a multicast. The simplest multicast rotocol provides no guarantees about

message delivery or ordering.

Multicast messages provide a useful infrastructure for constructing distributed systems with

the following characteristics:

1. Fault tolerance based on replicated services: A replicated service consists of a group of

servers. Client requests are multicast to all the members of the group, each of which performs

an identical operation. Even when some of the members fail, clients can still be served.

2. Discovering services in spontaneous networking: Section 1.3.2 defines service discovery

in the context of spontaneous networking. Multicast messages can be used by servers and

clients to locate available discovery services in order to register their interfaces or to look up

the interfaces of other services in the distributed system.

3. Better performance through replicated data: Data are replicated to increase the

performance

DISTRIBUTED SYSTEMS AY 2025-26

Page 75

of a service – in some cases replicas of the data are placed in users’ computers. Each time the

data changes, the new value is multicast to the processes managing the replicas.

4. Propagation of event notifications: Multicast to a group may be used to notify processes when

something happens. For example, in Facebook, when someone changes their status, all their

friends receive notifications. Similarly, publishsubscribe protocols may make use of group

multicast to disseminate events to subscribers (see Chapter 6).

IP multicast – An implementation of multicast communication

IP multicast • IP multicast is built on top of the Internet Protocol (IP). Note that IP packets

are addressed to computers – ports belong to the TCP and UDP levels. IP multicast allows

the sender to transmit a single IP packet to a set of computers that form a multicast group.

The sender is unaware of the identities of the individual recipients and of the size of the

group. A multicast group is specified by a Class D Internet address – that is, an address

whose first 4 bits are 1110 in IPv4.

At the application programming level, IP multicast is available only via UDP. An application

program performs multicasts by sending UDP datagrams with multicast addresses and

ordinary port numbers. It can join a multicast group by making its socket join the group,

enabling it to receive messages to the group. At the IP level, a computer belongs to a

multicast group when one or more of its processes has sockets that belong to that group.

When a multicast message arrives at a computer, copies are forwarded to all of the local

sockets that have joined the specified multicast address and are bound to the specified port

number. The following details are specific to IPv4:

Multicast routers: IP packets can be multicast both on a local network and on the wider

Internet. Local multicasts use the multicast capability of the local network, for example, of an

Ethernet.

Internet multicasts make use of multicast routers, which forward single datagrams to routers

on other networks, where they are again multicast to local members. To limit the distance of

propagation of a multicast datagram, the sender can specify the number of routers it is

allowed to pass – called the time to live, or TTL for short. To understand how routers know

which other routers have members of a multicast group.

Multicast address allocation: As discussed in Chapter 3, Class D addresses (that is, addresses

in the range 224.0.0.0 to 239.255.255.255) are reserved for multicast traffic and managed

globally by the Internet Assigned Numbers Authority (IANA). The management of this

address space is reviewed annually, with current practice documented in RPC 3171. This

document defines a partitioning of this address space into a number of blocks, including:

DISTRIBUTED SYSTEMS AY 2025-26

Page 76

• Local Network Control Block (224.0.0.0 to 224.0.0.225), for multicast traffic within a

given local network.

• Internet Control Block (224.0.1.0 to 224.0.1.225).

• Ad Hoc Control Block (224.0.2.0 to 224.0.255.0), for traffic that does not fit any other block.

• Administratively Scoped Block (239.0.0.0 to 239.255.255.255), which is used to

implement a scoping mechanism for multicast traffic (to constrain propagation).

Failure model for multicast datagrams • Datagrams multicast over IP multicast have the

same failure characteristics as UDP datagrams – that is, they suffer from omission failures.

The effect on a multicast is that messages are not guaranteed to be delivered to any particular

group member in the face of even a single omission failure. That is, some but not all of the

members of the group may receive it. This can be called unreliable multicast, because it does

not guarantee that a message will be delivered to any member of a group.

Java API to IP multicast • The Java API provides a datagram interface to IP multicast

through the class MulticastSocket, which is a subclass of DatagramSocket with the additional

capability of being able to join multicast groups. The class MulticastSocket provides two

alternative constructors, allowing sockets to be created to use either a or any free local port.

A process can join a multicast group with a given multicast address by invoking the

joinGroup method of its multicast socket. Effectively, the socket joins a multicast group at a

given port and it will

receive datagrams sent by processes on other computers to that group at that port.A process

can leave a specified group by invoking the leaveGroup method of its multicast socket.

DISTRIBUTED SYSTEMS AY 2025-26

Page 81

Multicast peer joins a group and sends and receives datagrams

Reliability and ordering of multicast

The effect of the failure semantics of IP multicast on the four examples of the use of

replication

1. Fault tolerance based on replicated services: Consider a replicated service that consists

of the members of a group of servers that start in the same initial state and always perform

the same operations in the same order, so as to remain consistent with one another. This

application of multicast requires that either all of the replicas or none of them should receive

each request to perform an operation – if one of them misses a request, it will become

inconsistent with the others. In most cases, this service would require that all members

receive request messages in the same order as one another.

2. Discovering services in spontaneous networking: One way for a process to discover

services in spontaneous networking is to multicast requests at periodic intervals, and for the

available services to listen for those multicasts and respond. An occasional lost request is not

an issue when discovering services.

3. Better performance through replicated data: Consider the case where the replicated data

itself, rather than operations on the data, are distributed by means of multicast messages. The

effect of lost messages and inconsistent ordering would depend on the method of replication

and the importance of all replicas being totally up-to-date.

4. Propagation of event notifications: The particular application determines the qualities

required of multicast. For example, the Jini lookup services use IP multicast to announce

their existence

DISTRIBUTED SYSTEMS AY 2025-26

Page 82

Communication between Distributed Objects

The Object Model

Five Parts of the Object Model

– An object-oriented program consists of a collection of interacting objects

• Objects consist of a set of data and a set of methods

• In DS, object’s data should be accessible only via methods

Object References

– Objects are accessed by object references

– Object references can be assigned to variables, passed as arguments, and returned as the

result of a method

– Can also specify a method to be invoked on that object

Interfaces

– Provide a definition of the signatures of a set of methods without specifying their

implementation

– Define types that can be used to declare the type of variables or of the parameters

andreturn values of methods

Actions

– Objects invoke methods in other objects

– An invocation can include additional information as arguments to perform the behavior

specified by the method

– Effects of invoking a method

1. The state of the receiving object may be changed

2. A new object may be instantiated

3. Further invocations on methods in other objects may occur

4. An exception may be generated if there is a problem encountered

Exceptions

– Provide a clean way to deal with unexpected events or errors

– A block of code can be defined to throw an exception when errors or

unexpectedconditions occur. Then control passes to code that catches the exception

Garbage Collection

– Provide a means of freeing the space that is no longer needed

– Java (automatic), C++ (user supplied)

Distributed Objects

DISTRIBUTED SYSTEMS AY 2025-26

Page 83

• Physical distribution of objects into different processes or computers in a distributed system

– Object state consists of the values of its instance variables

– Object methods invoked by remote method invocation (RMI)

– Object encapsulation: object state accessed only by the object methods

Usually adopt the client-server architecture

– Basic model

• Objects are managed by servers and

• Their clients invoke their methods using RMI

– Steps

1. The client sends the RMI request in a message to the server

2. The server executes the invoked method of the object

3. The server returns the result to the client in another message

– Other models

• Chains of related invocations: objects in servers may become clients of objects in other

servers

• Object replication: objects can be replicated for fault tolerance and performance

• Object migration: objects can be migrated to enhancing performance and availability

The Distributed Object Model

Two fundamental concepts: Remote Object Reference and Remote Interface

– Each process contains objects, some of which can receive remote invocations are called

remote objects (B, F), others only local invocations

– Objects need to know the remote object reference of an object in another process in order

to invoke its methods, called remote method invocations

– Every remote object has a remote interface that specifies which of its methods can be

invoked remotely

Remote and local method invocations

DISTRIBUTED SYSTEMS AY 2025-26

Page 84

Five Parts of Distributed Object Model

• Remote Object References

– accessing the remote object

– identifier throughout a distributed system

– can be passed as arguments

• Remote Interfaces

– specifying which methods can be invoked remotely

– name, arguments, return type

– Interface Definition Language (IDL) used for defining remote interface

Remote Object and Its remote Interface

• Actions

– An action initiated by a method invocation may result in further invocations on methods in

other objects located indifference processes or computers

– Remote invocations could lead to the instantiation of new objects, ie. objects M and Nof

following figure.

• Exceptions

– More kinds of exceptions: i.e. timeout exception

- RMI should be able to raise exceptions such as timeouts that are due to distribution as

wellas those raised during the execution of the method invoked

• Garbage Collection

- Distributed garbage collections is generally achieved by cooperation between the existing

local garbage collector and an added module that carries out a form of distributed garbage

collection, usually based on reference counting

 Design Issues for RMI

• Two design issues that arise in extension of local method invocation for RMI

L

C remote
invocation

instantiateinstantiate remote
invocation

K

M N

DISTRIBUTED SYSTEMS AY 2025-26

Page 85

– The choice of invocation semantics

• Although local invocations are executed exactly once, this cannot always be the case for RMI

due to transmission error

– Either request or reply message may be lost

– Either server or client may be crashed

– The level of transparency

• Make remote invocation as much like local invocation as possible

RMI Design Issues: Invocation Semantics

• Error handling for delivery guarantees

– Retry request message: whether to retransmit the request message until either a reply is

received or the server is assumed to have failed

– Duplicate filtering: when retransmissions are used, whether to filter out

duplicate requests at the server

– Retransmission of results: whether to keep a history of result messages to enable

lost results to be retransmitted without re-executing the operations

• Choices of invocation semantics

– Maybe: the method executed once or not at all (no retry nor retransmit)

– At-least-once: the method executed at least once

– At-most-once: the method executed exactly once

Invocation semantics: choices of interest

RMI Design Issues: Transparency

• Transparent remote invocation: like a local call

– marshalling/unmarshalling

– locating remote objects

– accessing/syntax

• Differences between local and remote invocations

DISTRIBUTED SYSTEMS AY 2025-26

Page 86

– latency: a remote invocation is usually several order of magnitude greater than that

ofa local one

– availability: remote invocation is more likely to fail

– errors/exceptions: failure of the network? server? hard to tell

• syntax might need to be different to handle different local vs remote errors/exceptions(e.g.

Argus)

– consistency on the remote machine:

• Argus: incomplete transactions, abort, restore states [as if the call was never made]

Implementation of RMI

• Communication module

– Two cooperating communication modules carry out the request-reply protocols:

message type, request ID, remote object reference

• Transmit request and reply messages between client and server

• Implement specific invocation semantics

– The communication module in the server

• selects the dispatcher for the class of the object to be invoked,

• passes on local reference from remote reference module,

• returns request

The role of proxy and skeleton in remote method invocation

• Remote reference module

– Responsible for translating between local and remote object references and for creatingremote

object references

– remote object table: records the correspondence between local and remote object references

• remote objects held by the process (B onserver)

• local proxy (B on client)

– When a remote object is to be passed for the first time, the module is asked to create a remote

DISTRIBUTED SYSTEMS AY 2025-26

Page 87

object reference, which it adds to its table

• Servant

– An instance of a class which provides the body of a remoteobject

– handles the remote requests

• RMI software

– Proxy: behaves like a local object, but represents the remote object

– Dispatcher: look at the methodID and call the corresponding method in the skeleton

– Skeleton: implements the method

Generated automatically by an interface compiler

Implementation Alternatives of RMI

• Dynamic invocation

– Proxies are static—interface complied into client code

– Dynamic—interface available during run time

• Generic invocation; more info in ―Interface Repository‖ (COBRA)

• Dynamic loading of classes (Java RMI)

• Binder

– A separate service to locate service/object by name through table mapping for namesand

remote object references

• Activation of remote objects

– Motivation: many server objects not necessarily in use all of the time

• Servers can be started whenever they are needed by clients, similar to inetd

– Object status: active or passive

• active: available for invocation in a running process

• passive: not running, state is stored and methods are pending

– Activation of objects:

• creating an active object from the corresponding passive object by

creatinga new instance of its class

• initializing its instance variables from the stored state

– Responsibilities of activator

• Register passive objects that are available for activation

• Start named server processes and activate remote objects in them

• Keep track of the locations of the servers for remote objects that it has

already activated

DISTRIBUTED SYSTEMS AY 2025-26

Page 88

• Persistent object stores

– An object that is guaranteed to live between activations of processes is called a

persistent object

– Persistent object store: managing the persistent objects

• stored in marshaled from on disk for retrieval

• saved those that were modified

– Deciding whether an object is persistent or not:

• persistent root: any descendent objects are persistent (persistent Java, PerDiS)

• some classes are declared persistent (Arjuna system)

• Object location

– specifying a location: ip address, port #, ...

– location service for migratable objects

• Map remote object references to their probable current locations

• Cache/broadcast scheme (similar to ARP)

– Cache locations

– If not in cache, broadcast to find it

• Improvement: forwarding (similar to mobile IP)

Distributed Garbage Collection

• Aim: ensure that an object

– continues to exist if a local or remote reference to it is still held anywhere

– be collected as soon as no object any longer holds a reference to it

• General approach: reference count

• Java's approach

– the server of an object (B) keeps track of proxies

– when a proxy is created for a remote object

• addRef(B) tells the server to add an entry

– when the local host's garbage collector removes the proxy

• removeRef(B) tells the server to remove the entry

– when no entries for object B, the object on server is deallocated

Remote Procedure Call

• client: "stub" instead of "proxy" (same function, different names)

– local call, marshal arguments, communicate the request

DISTRIBUTED SYSTEMS AY 2025-26

Page 89

• server:

– dispatcher

– "stub": unmarshal arguments, communicate the results back

Role of client and server stub procedures in RPC in the context of a procedural language

Case Study: Sun RPC

• Sun RPC: client-server in the SUN NFS (network file system)

– UDP or TCP; in other unix OS as well

– Also called ONC (Open Network Computing) RPC

• Interface Definition Language (IDL)

– initially XDR is for data representation, extended to be IDL

– less modern than CORBA IDL and Java

• program numbers instead of interface names

• procedure numbers instead of procedure names

• single input parameter (structs)

– rpcgen: compiler for XDR

• client stub; server main procedure, dispatcher, and server stub

• XDR marshalling, unmarshaling

• Binding (registry) via a local binder - portmapper

– Server registers its program/version/port numbers with portmapper

– Client contacts the portmapper at a fixed port with program/version numbers to get

the server port

– Different instances of the same service can be run on different computers at different ports

• Authentication

– request and reply have additional fields

DISTRIBUTED SYSTEMS AY 2025-26

Page 90

– unix style (uid, gid), shared key for signing, Kerberos

Files interface in Sun XDR

Events and Notifications

• Idea behind the use of events

– One object can react to a change occurring in another object

• Events

– Notifications of events: objects that represent events

• asynchronous and determined by receivers what events are interested

– event types

• each type has attributes (information in it)

• subscription filtering: focus on certain values in the attributes (e.g. "buy" events, but

only "buy car" events)

• Publish-subscribe paradigm

– publish events to send

– subscribe events to receive

• Main characteristics in distributed event-based systems

– Heterogeneous: a way to standardize communication inheterogeneous

systems

• not designed to communicate directly

– Asynchronous: notifications are sent asynchronously

DISTRIBUTED SYSTEMS AY 2025-26

Page 91

• no need for a publisher to wait for each subscriber--subscribers come and go

Dealing room system: allow dealers using computers to see the latest information about the

market prices of the stocks they deal in

Distributed Event Notification

• Distributed event notification

– decouple publishers from subscribers via an event service (manager)

• Architecture: roles of participating objects

– object of interest (usually changes in states are interesting)

– event

– notification

– subscriber

– observer object (proxy) [reduce work on the object of interest]

• forwarding

• filtering of events types and content/attributes

• patterns of events (occurrence of multiple events, not just one)

• mailboxes (notifications in batch es, subscriber might not be ready)

– publisher (object of interest or observer object)

DISTRIBUTED SYSTEMS AY 2025-26

Page 92

• generates event notifications

Example: Distributed Event Notification

• Three cases

– Inside object without an observer: send notifications directly to the subscribers

– Inside object with an observer: send notification via the observer to the subscribers

– Outside object (with an observer)

1. An observer queries the object of interest in order to discover when events occur

2. The observer sends notifications to the subscribers

DISTRIBUTED SYSTEMS AY 2025-26

Page 93

UNIT IV

Distributed File Systems: Introduction, File service Architecture, Case Study1: Sun

Network File System, Case Study 2: The Andrew File System.

Distributed Shared Memory: Introduction Design and Implementation issues,

Consistency Models.

DISTRIBUTED FILE SYSTEMS

A file system is responsible for the organization, storage, retrieval, naming, sharing, and

protection of files. File systems provide directory services, which convert a file name

(possibly a hierarchical one) into an internal identifier (e.g. inode, FAT index). They contain

a representation of the file data itself and methods for accessing it (read/write). The file

system is responsible for controlling access to the data and for performing low-level

operations such as buffering frequently used data and issuing disk I/O requests.

A distributed file system is to present certain degrees of transparency to the user and the

system: Access transparency: Clients are unaware that files are distributed and can access

them in the same way as local files are accessed.

Location transparency: A consistent name space exists encompassing local as well as

remote files. The name of a file does not give it location.

Concurrency transparency: All clients have the same view of the state of the file system.

This means that if one process is modifying a file, any other processes on the same system or

remote systems that are accessing the files will see the modifications in a coherent manner.

Failure transparency: The client and client programs should operate correctly after a

server failure.

Heterogeneity: File service should be provided across different hardware and operating

system platforms.

Scalability: The file system should work well in small environments (1 machine, a dozen

machines) and also scale gracefully to huge ones (hundreds through tens of thousands of

systems).

Replication transparency: To support scalability, we may wish to replicate files across

multiple servers. Clients should be unaware of this.

Migration transparency: Files should be able to move around without the client's

knowledge. Support fine-grained distribution of data: To optimize performance, we may wish

to locate

DISTRIBUTED SYSTEMS AY 2025-26

Page 95

individual objects near the processes that use them

Tolerance for network partitioning: The entire network or certain segments of it may be

unavailable to a client during certain periods (e.g. disconnected operation of a laptop). The file

system should be tolerant of this.

File Service Architecture

 An architecture that offers a clear separation of the main concerns in providing

access to files is obtained by structuring the file service as three components:
 A flat file service
 A directory service

 A client module.

 The relevant modules and their relationship is shown in Figure 5.

Figure 5. File service architecture

 The Client module implements exported interfaces by flat file and directory services on server

side.
 Responsibilities of various modules can be defined as follows:

 Flat file service:

 Concerned with the implementation of operations on the contents of file. Unique File
Identifiers (UFIDs) are used to refer to files in all requests for

flat file service operations. UFIDs are long sequences of bits chosen so that each file has a

unique among all of the files in a distributed system.

 Directory service:

 Provides mapping between text names for the files and their UFIDs. Clients may obtain the

UFID of a file by quoting its text name to directory service. Directory service supports

functions needed generate directories, to add new files to directories.

 Client module:

 It runs on each computer and provides integrated service (flat file and directory) as a single

API to application programs. For example, in UNIX hosts, a client module emulates the

full set of Unix file operations.

 It holds information about the network locations of flat-file and directory server processes;

and achieve better performance through implementation of a cache of recently used file

blocks at the client.

DISTRIBUTED SYSTEMS AY 2025-26

Page 96

 Flat file service interface:

 Figure 6 contains a definition of the interface to a flat file service.

Figure 6. Flat file service operations

 Access control

 In distributed implementations, access rights checks have to be

performed at the server because the server RPC interface is an

otherwise unprotected point of access to files.

 Directory service interface

 Figure 7 contains a definition of the RPC interface to a directory

service.

Figure 7. Directory service operations

DISTRIBUTED SYSTEMS AY 2025-26

Page 97

 Hierarchic file system

 A hierarchic file system such as the one that UNIX provides consists

of a number of directories arranged in a tree structure.

 File Group

 A file group is a collection of files that can be located on any server

or moved between servers while maintaining the same names.

– A similar construct is used in a UNIX file system.

– It helps with distributing the load of file serving between

several servers.

– File groups have identifiers which are unique throughout the

system (and hence for an open system, they must be globally

unique).

To construct globally unique ID we use some unique attribute of the machine on

which it is created. E.g: IP number, even though the file group may move

subsequently.

DFS: Case Studies

 NFS (Network File System)

 Developed by Sun Microsystems (in 1985)

 Most popular, open, and widely used.

 NFS protocol standardized through IETF (RFC 1813)

 AFS (Andrew File System)

 Developed by Carnegie Mellon University as part of Andrew distributed

computing environments (in 1986)

 A research project to create campus wide file system.

 Public domain implementation is available on Linux (LinuxAFS)

 It was adopted as a basis for the DCE/DFS file system in the Open Software

Foundation (OSF, www.opengroup.org) DEC (Distributed Computing

Environment

http://www.opengroup.org/

DISTRIBUTED SYSTEMS AY 2025-26

Page 98

Sun Network File System

NFS architecture

Figure 8 shows the architecture of Sun NFS

 The file identifiers used in NFS are called file handles.

 A simplified representation of the RPC interface provided by NFS version 3 servers is
shown in Figure 9.

Figure 9. NFS server operations (NFS Version 3 protocol, simplified)

DISTRIBUTED SYSTEMS AY 2025-26

Page 99

 NFS access control and authentication

 The NFS server is stateless server, so the user's identity and access rights
must be checked by the server on each request.

 In the local file system they are checked only on the file’s access
permission attribute.

 Every client request is accompanied by the userID and groupID

 It is not shown in the Figure 8.9 because they are inserted by the RPC

system.

 Kerberos has been integrated with NFS to provide a stronger andmore

comprehensive security solution.

 Mount service

 Mount operation:

mount(remotehost, remotedirectory, localdirectory)

 Server maintains a table of clients who have mounted filesystems at that

server.
 Each client maintains a table of mounted file systems holding:

< IP address, port number, file handle>

 Remote file systems may be hard-mounted or soft-mounted in a client

computer.

 Figure 10 illustrates a Client with two remotely mounted file stores.

Figure 10. Local and remote file systems accessible on an NFS client

(root)

Serve

r 1

Clien
t

Server 2

(root

. . Remote vmu

u
Remot n
e f

DISTRIBUTED SYSTEMS AY 2025-26

Page 100

 Automounter

 The automounter was added to the UNIX implementation of NFS in order to

mount a remote directory dynamically whenever an ‘empty’ mount point is referenced by a

client.

 Automounter has a table of mount points with a reference to one or

more NFS servers listed against each.

 it sends a probe message to each candidate server and then uses the

mount service to mount the file system at the first server to respond.

 Automounter keeps the mount table small.

 Automounter Provides a simple form of replication for read-only file

systems.

 E.g. if there are several servers with identical copies of /usr/lib then

each server will have a chance of being mounted at some clients.

 Server caching

 Similar to UNIX file caching for local files:

 pages (blocks) from disk are held in a main memory buffer cache

until the space is required for newer pages. Read-ahead and delayed-write optimizations.

 For local files, writes are deferred to next sync event (30 second

intervals).

 Works well in local context, where files are always accessed through

the local cache, but in the remote case it doesn't offer necessary synchronization guarantees

to clients.

 NFS v3 servers offers two strategies for updating the disk:

 Write-through - altered pages are written to disk as soon as they are

received at the server. When a write() RPC returns, the NFS client knows that the page is on

the disk.

 Delayed commit - pages are held only in the cache until a commit()

call is received for the relevant file. This is the default mode used by NFS v3 clients. A

commit() is issued by the client whenever a file is closed.

 Client caching

 Server caching does nothing to reduce RPC traffic between client and server

 further optimization is essential to reduce server load in large

networks.

DISTRIBUTED SYSTEMS AY 2025-26

Page 101

 NFS client module caches the results of read, write, getattr, lookup

and readdir operations

 synchronization of file contents (one-copy semantics) is not

guaranteed when two or more clients are sharing the same file.

 Timestamp-based validity check

 It reduces inconsistency, but doesn't eliminate it.

 It is used for validity condition for cache entries at the client:

(T - Tc < t) v (Tmclient = Tmserver)

 it is configurable (per file) but is typically set to 3 seconds for files and 30

secs. for directories.

 it remains difficult to write distributed

applications that share files with NFS.

 Other NFS optimizations

 Sun RPC runs over UDP by default (can use TCP if required).

 Uses UNIX BSD Fast File System with 8-kbyte blocks.

 reads() and writes() can be of any size (negotiated between client and server).

 The guaranteed freshness interval t is set adaptively for individual files to reduce

getattr() calls needed to update Tm.

 File attribute information (including Tm) is piggybacked in replies to all file

requests.

 NFS performance

 Early measurements (1987) established that:

 Write() operations are responsible for only 5% of server calls intypical

UNIX environments.

 hence write-through at server is acceptable.

 Lookup() accounts for 50% of operations -due to step-by-step pathname

DISTRIBUTED SYSTEMS AY 2025-26

Page 102

resolution necessitated by the naming and mounting semantics.

 More recent measurements (1993) show high performance.

 see www.spec.org for more recent measurements.

 NFS summary

NFS is an excellent example of a simple, robust, high-performance distributed

service.

Achievement of transparencies are other goals of NFS:

 Access transparency:

 The API is the UNIX system call interface for both localand

remote files.

 Location transparency:

 Naming of filesystems is controlled by client mount

operations, but transparency can be ensured by an appropriate system configuration.

 Mobility transparency:

 Hardly achieved; relocation of files is not possible, relocation

of filesystems is possible, but requires updates to client configurations.

 Scalability transparency:

 File systems (file groups) may be subdivided and allocated to

separate servers.

 Replication transparency:

– Limited to read-only file systems; for writable files, the SUN Network

Information Service (NIS) runs over NFS and is used to replicate essential system files.

 Hardware and software operating system heterogeneity:

– NFS has been implemented for almost every known operating system and

hardware platform and is supported by a variety of filling systems.

 Fault tolerance:

– Limited but effective; service is suspended if a server fails. Recovery from

failures is aided by the simple statelessdesign.

 Consistency:

– It provides a close approximation to one-copy semantics
andmeets the needs of the vast majority of applications.

– But the use of file sharing via NFS for communication or

close coordination between processes on different computers cannot be

http://www.spec.org/

DISTRIBUTED SYSTEMS AY 2025-26

Page 103

recommended.

 Security:

– Recent developments include the option to use a secure RPC

implementation for authentication and the privacy and security of the data transmitted with

read and write operations.

– Efficiency:

 NFS protocols can be implemented for use in

situations that generate very heavy loads.

Case Study: The Andrew File System (AFS)

AFS differs markedly from NFS in its design and implementation. The

differences are primarily attributable to the identification of scalability as the most important

design goal. AFS is designed to perform well with larger numbers of active users than other

distributed file systems. The key strategy for achieving scalability is the caching of whole

files in client nodes. AFS has two unusual design characteristics:

Whole-file serving: The entire contents of directories and files are transmitted to

client computers by AFS servers (in AFS-3, files larger than 64 kbytes are transferred in 64-

kbyte chunks).

Whole file caching: Once a copy of a file or a chunk has been transferred to a

client computer it is stored in a cache on the local disk. The cache contains several hundred

of the files most recently used on that computer. The cache is permanent, surviving reboots

of the client computer. Local copies of files are used to satisfy clients’ open requests in

preference to remote copies whenever possible.

 Like NFS, AFS provides transparent access to remote shared files for UNIX

programs running on workstations.

 AFS is implemented as two software components that exist at UNIX processes

called Vice and Venus.

Scenario • Here is a simple scenario illustrating the operation of AFS:

1. When a user process in a client computer issues an open system call for a

file in the shared

-file space and there is not a current copy of the file in the local cache, the server

holding the file is located and is sent a request for a copy of the file.

2. The copy is stored in the local UNIX file system in the client computer. The
copy is then

opened and the resulting UNIX file descriptor is returned to the client.

DISTRIBUTED SYSTEMS AY 2025-26

Page 104

3. Subsequent read, write and other operations on the file by processes in the

client computer are applied to the local copy.

4. When the process in the client issues a close system call, if the local copy has

been updated its contents are sent back to the server. The server updates the file contents and

the timestamps on the file. The copy on the client’s local disk is retained in caseisneeded

again by

a user-level process on the same workstation.

Figure 11. Distribution of processes in the Andrew File System

Workstations Servers

 The files available to user processes running on workstations are either local or shared.

 Local files are handled as normal UNIX files.

 They are stored on the workstation’s disk and are available only to local user processes.

 Shared files are stored on servers, and copies of them are cached on the local disks of

workstations.

 The name space seen by user processes is illustrated in Figure 12.

program

DISTRIBUTED SYSTEMS AY 2025-26

Page 105

Venus

UNIX file
 operations

UNIX kernel

User

Venus

Figure 12. File name space seen by clients of AFS

Local Shared

 The UNIX kernel in each workstation and server is a modified version of BSD UNIX.

 The modifications are designed to intercept open, close and some other file system calls

when they refer to files in the shared name space and pass them to the Venus process in the

client computer. (Figure 13)

Figure 13. System call interception in AFS

Workstation

 Figure 14 describes the actions taken by Vice, Venus and the UNIX kernel when a user

 process issues system calls.

Symbolic

DISTRIBUTED SYSTEMS AY 2025-26

Page 106

Figure 14. implementation of file system calls in AFS

Cache consistency
When Vice supplies a copy of a file to a Venus process it also provides a callback promise – a

token issued by the Vice server that is the custodian of the file, guaranteeing that it will notify

the Venus process when any other client modifies the file. Callback promises are stored with

the cached files on the workstation disks and have two states: valid or cancelled. When a

server performs a request to update a file it notifies all of the Venus processes to which it has

issued callback promises by sending a callback to each – a callback is a remote procedure call

from a server to a Venus process.

When the Venus process receives a callback, it sets the callback promise token for the relevant
file to cancelled.
Whenever Venus handles an open on behalf of a client, it checks the cache. If the required file

is found in the cache, then its token is checked. If its value is cancelled, then a fresh copy of

the file must be fetched from the Vice server, but if the token is valid, then the cached copy

can be opened and used without reference to Vice.

DISTRIBUTED SYSTEMS AY 2025-26

Page 107

When a workstation is restarted after a failure or a shutdown, Venus aims to retain as many as

possible of the cached files on the local disk, but it cannot assume that the callback promise

tokens are correct, since some callbacks may have been missed. Before the first use of each

cached file or directory after a restart, Venus therefore generates a cache validation request

containing the file modification timestamp to the server that is the custodian of the file. If the

timestamp is current, the server responds with valid and the token is reinstated. If the

timestamp shows that the file is out of date, then the server responds with cancelled and the

token is set to cancelled. Callbacks must be renewed before an open if a time T (typically on

the order of a few minutes) has elapsed since the file was cached without communication

from the server. This is to deal with possible Other aspects

AFS introduces several other interesting design developments and refinements

that we outline here, together with a summary of performance evaluation

results:

1. UNIX kernel modifications

2. Location database

3. Threads

4. Read-only replicas

5. Bulk transfers

6. Partial file caching

7. Performance

8. Wide area support

DISTRIBUTED SYSTEMS AY 2025-26

Page 108

DISTRIBUTED SHARED MEMORY

Distributed shared memory (DSM) is an abstraction used for sharing data between

computers that do not share physical memory. Processes access DSM by reads and updates

to what appears to be ordinary memory within their address space. However, an underlying

runtime system ensures transparently that processes executing at different computers

observe the updates made by one another.

The main point of DSM is that it spares the programmer the concerns of message passing

when writing applications that might otherwise have to use it. DSM is primarily a tool for

parallel applications or for any distributed application or group of applications in which

individual shared data items can be accessed directly. DSM is in general less appropriate in

client-server systems, where clients normally view server-held resources as abstract data

and access them by request(for reasons of modularity and protection).

Message passing cannot be avoided altogether in a distributed system: in the absence if

physically shared memory, the DSM runtime support has to send updates in messages

between computers. DSM systems manage replicated data: each computer has a local copy

of recently accessed data items stored in DSM, for speed of access.

In distributed memory multiprocessors and clusters of off-the-shelf computing components

(see Section 6.3), the processors do not share memory but are connected by a very high-

speed network. These systems, like general-purpose distributed systems, can scale to much

greater numbers of processors than a shared-memory multiprocessor’s 64 or so. A central

DISTRIBUTED SYSTEMS AY 2025-26

Page 109

question that has been pursued by the DSM and multiprocessor research communities is

whether the investment in knowledge of shared memory algorithms and the associated

software can be directly transferred to a more scalable distributed memory architecture.

Message passing versus DSM

As a communication mechanism, DSM is comparable with message passing rather than with

request- reply-based communication, since its application to parallel processing, in

particular, entails the use of asynchronous communication. The DSM and message

passing approaches to programming can be contrasted as follows:

Programming model:

Under the message passing model, variables have to be marshalled from one process,

transmitted and unmarshalled into other variables at the receiving process. By contrast, with

shared memory

the processes involved share variables directly, so no marshalling is necessary – even of

pointers to shared variables – and thus no separate communication operations are necessary.

Efficiency :

Experiments show that certain parallel programs developed for DSM can be made to

perform about as well as functionally equivalent programs written for message passing

platforms on the same hardware – at least in the case of relatively small numbers of

computers (ten or so). However, this result cannot be generalized. The performance of a

program based on DSM depends upon many factors, as we shall discuss below –

particularly the pattern of data sharing. Implementation approaches to DSM Distributed

shared memory is implemented using one or a combination of specialized hardware,

conventional paged virtual memory or middleware:

Hardware:Shared-memory multiprocessor architectures based on a NUMA architecture rely on

specialized hardware to provide the processors with a consistent view of shared memory. They

handle

memory LOAD and STORE instructions by communicating with remote memory and cache

modules as necessary to store and retrieve data.

Paged virtual memory:

Many systems, including Ivy and Mether , implement DSM as a region of virtual

memory occupying the same address range in the address space of every

participating process.

DISTRIBUTED SYSTEMS AY 2025-26

Page 110

#include "world.h"

struct shared { int

a, b; }; Program

Writer:

main()

{

struct shared *p;

methersetup(); /* Initialize the Mether

runtime */ p = (struct shared

*)METHERBASE;

/* overlay structure on METHER

segment */

p->a = p->b = 0; /* initialize fields to

zero */

while(TRUE){ /* continuously update structure

fields */ p –>a = p –>a + 1;

p –>b = p –>b - 1;

}

}

Program Reader:

main()

{

struct shared *p;

methersetup();

p = (struct shared *)METHERBASE;

while(TRUE){ /* read the fields once every second */

printf("a = %d, b = %d\n", p –>a, p –>b);

sleep(1);

}

}

DISTRIBUTED SYSTEMS AY 2025-26

Page 111

Middleware:

Some languages such as Orca, support forms of DSM without any hardware or paging

support, in a platform-neutral way. In this type of implementation, sharing is implemented

by communication between instances of the user-level support layer in clients and servers.

Processes make calls to this layer when they access data items in DSM. The instances of

this layer at the different computers access local data items and communicate as necessary

to maintain consistency.

Design and implementation issues

The synchronization model used to access DSM consistently at the application level; the

DSM consistency model, which governs the consistency of data values accessed from

different computers; the update options for communicating written values between

computers; the granularity of sharing in a DSM implementation; and the problem of

thrashing.

Structure

A DSM system is just such a replication system. Each application process is presented with

some abstraction of a collection of objects, but in this case the ‘collection’ looks more or

less like memory. That is, the objects can be addressed in some fashion or other. Different

approaches to DSM vary in what they consider to be an ‘object’ and in how objects are

addressed. We consider three approaches, which view DSM as being composed

respectively of contiguous bytes, language-level objects or immutable data items.

Byte-oriented

This type of DSM is accessed as ordinary virtual memory – a contiguous array of

bytes. It is the

view illustrated above by the Mether system. It is also the view of many other DSM

systems, including Ivy.It allows applications (and language implementations) to impose

whatever data structures they want on the shared memory. The shared objects are directly

addressible memory locations (in practice, the shared locations may be multi-byte words

rather than individual bytes). The only operations upon those objects are read (or LOAD)

and write (or STORE). If x and y are two memory locations, then we denote instances of

these operations as follows:

Object-oriented

The shared memory is structured as a collection of language-level objects with higher-level

DISTRIBUTED SYSTEMS AY 2025-26

Page 112

semantics than simple read / write variables, such as stacks and dictionaries. The contents

of the shared memory are changed only by invocations upon these objects and never by

direct access to their member variables. An advantage of viewing memory in this way is

that object semantics can be utilized when enforcing consistency.

Immutable data

When reading or taking a tuple from tuple space, a process provides a tuple specification

and the tuple space returns any tuple that matches that specification – this is a type of

associative addressing. To enable processes to synchronize their activities, the read

and take

operations both block until there is a matching tuple in the tuple space.

Synchronization model

Many applications apply constraints concerning the values stored in shared memory. This is

as true of applications based on DSM as it is of applications written for sharedmemory

multiprocessors (or indeed for any concurrent programs that share data, such as operating

system kernels and multi- threaded servers). For example, if a and b are two variables stored

in DSM, then a constraint might be that a=b always. If two or moreprocesses execute the

following code:

a:= a + 1;

b := b + 1;

then an inconsistency may arise. Suppose a and b are initially zero and that process 1gets as

far as setting a to 1. Before it can increment b, process 2 sets a to 2 and b to 1.

Consistency model

The local replica manager is implemented by a combination of middleware (the DSM runtime

layer in each process) and the kernel. It is usual for middleware to perform the majority of

DSM processing. Even in a page-based DSM implementation, the kernel usually provides

only basic page mapping, page-fault handling and communication mechanisms and

middleware is

responsible for implementing the page-sharing policies. If DSM segments are persistent, then

one or more storage servers (for example, file servers) will also act as replica managers.

DISTRIBUTED SYSTEMS AY 2025-26

Page 113

Sequential consistency

A DSM system is said to be sequentially consistent if for any execution there is some

interleaving of the series of operations issued by all the processes that satisfies the following

two criteria:

SC1: The interleaved sequence of operations is such that if R(x) a occurs in the

sequence, then either the last write operation that occurs before it in the interleaved sequence

is W(x) a, or no write operation occurs before it and a is the initial value of x.

SC2: The order of operations in the interleaving is consistent with the program order

in which each individual client executed them.

Coherence

Coherence is an example of a weaker form of consistency. Under coherence, every process

agrees on the order of write operations to the same location, but they do not necessarily agree

on the ordering of write operations to different locations. We can think of coherence as

sequential consistency on a locationby- location basis. Coherent DSM can be implemented by

taking a protocol for implementing

DISTRIBUTED SYSTEMS AY 2025-26

Page 114

sequential consistency and applying it separately to each unit of replicated data – for

example, each page.

Weak consistency

This model exploits knowledge of synchronization operations in order to relax memory

consistency, while appearing to the programmer to implement sequential consistency (at least,

under certain conditions that are beyond the scope of this book). For example, if the

programmer uses a lock to implement a critical section, then a DSM system can assume that

no other process may access the data items accessed under mutual exclusion within it. It is

therefore redundant for the DSM system to propagate updates to these items until the process

leaves the critical section. While items are left with ‘inconsistent’ values some of the time,

they are not accessed at those points; the execution appears to be sequentially consistent.

Update options

Two main implementation choices have been devised for propagating updates made by one

process to the others: write-update and write-invalidate. These are applicable to a variety of

DSM consistency models, including sequential consistency. In outline, the options are as

follows:

Write-update: The updates made by a process are made locally and multicast to all other

replica managers possessing a copy of the data item, which immediately modify the data read

by local processes. Processes read the local copies of data items, without the need for

communication. In addition to allowing multiple readers, several processes may write the

same data item at the same time; this is known as multiple-reader/multiple-writer sharing.

DISTRIBUTED SYSTEMS AY 2025-26

Page 115

Write-invalidate: This is commonly implemented in the form of multiple-reader/ single-

writer sharing. At any time, a data item may either be accessed in read-only mode by one or

more processes, or it may be read and written by a single process. An item that is currently

accessed in read-only mode can be copied indefinitely to other processes. When a process

attempts to write to it, a multicast message is first sent to all other copies to invalidate them

and this is acknowledged before the write can take place; the other processes are thereby

prevented from reading stale data (that is, data that are not up to date). Any processes

attempting to access the data item are blocked if a writer exists.

Granularity

An issue that is related to the structure of DSM is the granularity of sharing. Conceptually,

all processes share the entire contents of a DSM. As programs sharing DSM execute,

however, only certain parts of the data are actually shared and then only for certain times

during the execution. It would clearly be very wasteful for the DSM implementation always

to transmit the entire contents of DSM as processes access and update it.

Thrashing

A potential problem with write-invalidate protocols is thrashing. Thrashing is said to occur

where the DSM runtime spends an inordinate amount of time invalidating and transferring

shared data compared with the time spent by application processes doing useful work. It

occurs when several processes compete for the same data item, or for falsely shared data

items.

DISTRIBUTED SYSTEMS AY 2025-26

Page 116

CONSISTENCY MODELS

Models of memory consistency can be divided into uniform models, which do not distinguish

between types of memory access, and hybrid models, which do distinguish between ordinary

and synchronization accesses (as well as other types of access).

Other uniform consistency models include:

Causal consistency: Reads and writes may be related by the happened-before relationship .

This is defined to hold between memory operations when either (a) they are made by the same

process; (b) a process reads a value written by another process; or (c) there exists a sequence

of such operations linking the two operations. The model’s constraint is that the value

returned by a read must be consistent with the happened-before relationship.

Processor consistency: The memory is both coherent and adheres to the pipelined RAM

model (see below). The simplest way to think of processor consistency is that the memory is

coherent and that all processes agree on the ordering of any two write accesses made by the

same process that is, they agree with its program order.

DISTRIBUTED SYSTEMS AY 2025-26

Page 117

UNIT-V

.

 Transactions and Concurrency control: Introduction, Transactions, Nested Transactions,

Locks, optimistic concurrency control, Timestamp ordering, Comparison of methods for

concurrency control.

Distributed Transactions: Introduction, Flat and Nested Distributed Transactions, Atomic

commit protocols, Concurrency control in distributed transactions, Distributed deadlocks,

Transaction recovery

Introduction

The goal of transactions is to ensure that all of the objects managed by a server remain in a

consistent state when they are accessed by multiple transactions and in the presence of server

crashes Objects that can be recovered after their server crashes are called recoverable objects.

In general, the objects managed by a server may be stored in volatile memory(for example,

RAM) or persistent memory (for example, a hard disk). Even if objects are stored in volatile

memory, the server may use persistent memory to store sufficient information for the state of

the objects to be recovered if the server process crashes. This enables servers to make objects

recoverable. A transaction is specified by a client as a set of operations on objects to be

performed as an indivisible unit by the servers

managing those objects. The servers must guarantee that either the entire transaction is carried

out and the results recorded in permanent storage or, in the case that one or more of them

crashes, its effects are completely erased. The next chapter discusses issues related to

transactions that involve several servers, in particular how they decide on the outcome of a

distributed transaction.

Simple synchronization (without transactions)

One of the main issues of this chapter is that unless a server is carefully designed, its

operations performed on behalf of different clients may sometimes interfere with one another.

Such interference may result in incorrect values in the objects. In this section, we discuss how

client operations may be synchronized without recourse to transactions.

Atomic operations at the server •

multiple threads is beneficial to performance in many servers. We have also noted that the use

of threads allows operations from multiple clients to run concurrently and possibly access the

DISTRIBUTED SYSTEMS AY 2025-26

Page 118

same objects. Therefore, the methods of objects should be designed for use in a multi-

threaded context.

For example, if the methods deposit and withdraw are not designed for use in a multi-threaded

program, then it is possible that theservers managing those objects. The servers must

guarantee that either the entire transaction is carried out and the results recorded in permanent

storage or, in the case that one or more of them crashes, its effects are completely erased. The

next chapter discusses issues related to transactions that involve several servers, in particular

how they decide on the outcome of a distributed transaction.

Simple synchronization (without transactions)

One of the main issues of this chapter is that unless a server is carefully designed, its

operations performed on behalf of different clients may sometimes interfere with one another.

Such interference may result in incorrect values in the objects. In this section, we discuss how

client operations may be synchronized without recourse to transactions.

Atomic operations at the server •

multiple threads is beneficial to performance in many servers. We have also noted that

the use of threads allows operations from multiple clients to run concurrently and possibly

access the same objects. Therefore, the methods of objects should be designed for use in a

multi-threaded context. For example, if the methods deposit and withdraw are not designed for

use in a multi- threaded program, then it is possible that the actions of two or more concurrent

executions of the method could be interleaved arbitrarily and have strange effects on the

instance variables of the account objects.

 Figure 16.1 Operations of the Account interface

deposit(amount)

deposit amount in the account withdraw(amount)

withdraw amount from the account getBalance()-> amount

return the balance of the account setBalance(amount)

set the balance of the account to amount

Operations of the Branch interface

 create(name)-> account

DISTRIBUTED SYSTEMS AY 2025-26

Page 119

create a new account with a given name lookUp(name)-> account

return a reference to the account with the given name branchTotal()-> amount

return the total of all the balances at the branch

the synchronized keyword, which can be applied to methods in Java to ensure that only one

thread at a time can access an object. In our example, the class that implements the Account

interface will be able to declare the

methods as synchronized. For example:

public synchronized void deposit(int amount) throws RemoteException{

// adds amount to the balance of the account

}

If one thread invokes a synchronized method on an object, then that object is effectively

locked, and another thread that invokes one of its synchronized methods will be blocked until

the lock is released. Thisformof synchronization forces theserversmanaging those objects. The

servers must guarantee that either the entire transaction is carried out and the results recorded

in permanent storage or, in the case that one or more of them crashes, its effects are completely

erased. The next chapter discusses issues

related to transactions that involve several servers, in particular how they decide on the

outcome of a distributed transaction.

Simple synchronization (without transactions)

One of the main issues of this chapter is that unless a server is carefully designed, its

operations performed on behalf of different clients may sometimes interfere with one another.

Such interference may result in incorrect values in the objects. In this section,we discuss how

client operations may be synchronized without recourse to transactions.

Atomic operations at the server •

multiple threads is beneficial to performance in many servers. We have also noted that

the use of threads allows operations from multiple clients to run concurrently and possibly

access the same objects. Therefore, the methods of objects should be designed for use in a

multi-threaded context. For example, if the methods deposit and withdraw are not designed for

use in a multi-threaded program, then it is possible that the actions of two or more

concurrent executions of the method could be interleaved

DISTRIBUTED SYSTEMS AY 2025-26

Page 120

arbitrarily and have strange effects on the instance variables of the account objects.

 Figure 16.1 Operations of the Account interface

deposit(amount)

deposit amount in the account withdraw(amount)

withdraw amount from the account getBalance()-> amount

return the balance of the account setBalance(amount)

set the balance of the account to amount Operations of the Branch interface create(name)->

account

create a new account with a given name lookUp(name)-> account

return a reference to the account with the given name branchTotal()-> amount

return the total of all the balances at the branch

 the synchronized keyword, which can be applied to methods in Java to ensure that only one

thread at a time can access an object. In our example, the class that implements the Account

interface will be able to declare the

 methods as synchronized. For example:

 public synchronized void deposit(int amount) throws RemoteException{

 // adds amount to the balance of the account

 }

If one thread invokes a synchronized method on an object, then that object is effectively

locked, and another thread that invokes one of its synchronized methods will be blocked

until the lock is released. This form of synchronization forces the execution of threads to be

separated in time and ensures that the instance variables of a single object are accessed in a

consistent manner. Without synchronization, two separate deposit invocations might read

the balance before either has incremented it – resulting in an incorrect value. Any method that

accesses an instance variable that can vary should be synchronized.

DISTRIBUTED SYSTEMS AY 2025-26

Page 121

Operations that are free from interference from concurrent operations being performed in

other threads are called atomic operations. The use of synchronized methods in Java is one

way of achieving atomic operations. But in other programming environments for multi-

threaded servers the operations on objects still need to have atomic operations in order to keep

their objects consistent. This may be achieved by the use of any available mutual exclusion

mechanism, such as a mutex.Enhancing client cooperation by synchronization of server

operations •

Clients may use a server as a means of sharing some resources. This is achieved by some

clients using operations to update the server’s objects and other clients using operations to

access them. The above scheme for synchronized access to objects provides all that is

required in many applications – it prevents threads interfering with one another. However,

some applications require a way for threads to communicate with each other.

For example, a situation may arise in which the operation requested by one client cannot be

completed until an operation requested by another client has been performed. This can happen

when some clients are producers and others are consumers – the consumers may have to wait

until a producer has supplied some more of the commodity

in question. It can also occur when clients are sharing a resource – clients needing the resource

may have to wait for other clients to release it. The Java wait and notify methods allow threads

to communicate with one another in a manner that solves the above problems. They must be

used within synchronized methods of an object. A thread calls wait on an object so as to

suspend itself and to allow another thread to execute a method of that object. A thread calls

notify to inform any thread waiting on that object that it has changed some of its data. Access

to an object is still atomic when threads wait for one another: a thread that calls wait gives up

its lock and suspends itself as a single atomic action; when a thread is restarted after being

notified it acquires a new lock on the object and resumes execution from after its wait. A

thread that calls notify (from within a synchronized method) completes the execution of that

method before releasing the lock on the object. Consider the implementation of a shared Queue

object with two methods: first removes and returns the first object in the queue, and append

adds a given object to the end of the queue. The method first will test whether the queue is

empty, in which case it will call wait on the queue. If a client invokes first when the queue is

empty, it will not get a reply until another client has added something to the queue – the

append operation will call notify when it has added an object to the queue. This allows one of

the threads waiting on the queue object to resume and to return the first object in the queue to it

DISTRIBUTED SYSTEMS AY 2025-26

Page 122

 client. When threads can synchronize their actions on an object by means of wait and notify,

the server holds onto requests that cannot immediately be satisfied and the client waits for a

reply until another client has produced whatever it needs.

Failure model for transactions Lampson [1981] proposed a fault model for distributed

transactions that accounts for failures of disks, servers and communication. In this model, the

claim is that the algorithms work correctly in the presence of predictable faults, but no claims

are made about their behaviour when a disaster occurs. Although errors may occur, they can

be detected and dealt with before any incorrect behaviour results. The model states the

following:

• Writes to permanent storage may fail, either by writing nothing or by writing a wrong value

– for example, writing to the wrong block is a disaster. File storage may also decay. Reads

from permanent storage can detect (by a checksum) when a actions of two or more concurrent

executions of the method could be interleaved arbitrarily and have strange effects on the

instance variables of the account objects.

 Figure 16.1 Operations of the Account interface

deposit(amount)

deposit amount in the account withdraw(amount)

withdraw amount from the account getBalance()-> amount

return the balance of the account setBalance(amount)

set the balance of the account to amount Operations of the Branch interface create(name)->

account

create a new account with a given name lookUp(name)-> account

return a reference to the account with the given name branchTotal()-> amount

return the total of all the balances at the branch the synchronized keyword, which can be

applied to methods in Java to ensure that only one thread at a time can access an object. In our

example, the class that implements the Account interface will be able to declare the

methods as synchronized.

For example:

public synchronized void deposit(int amount) throws RemoteException{

 // adds amount to the balance of the account

 }

If one thread invokes a synchronized method on an object, then that object is effectively

locked, and another thread that invokes one of its synchronized methods will be blocked until

the lock is released. This form of synchronization forces the execution of threads to be

separated in time and ensures that the instance variables of a single object areaccessed in a

DISTRIBUTED SYSTEMS AY 2025-26

Page 123

consistent manner. Without synchronization, two separate deposit invocations might read the

balance before either has incremented it – resulting in an incorrect value. Any method that

accesses an instance variable that can vary should be synchronized. Operations that are free

from interference from concurrent operations being performed in other threads are called

atomic operations. The use of synchronized methods in Java is one way of achieving atomic

operations. But in other programming environments for multi-threaded servers the operations

on objects still need to have atomic operations in order to keep their objects consistent. This

may be achieved by the use of any available mutual exclusion mechanism, such as a

mutex.Enhancing client cooperation by synchronization of server operations.

• Clients may use a server as a means of sharing some resources. This is achieved by some

clients using operations to update the server’s objects and other clients using operations to

access them. The above scheme for synchronized access to objects provides all that is

required in many applications – it prevents threads interfering with one another. However,

some applications require a way for threads to communicate with each other.

For example, a situation may arise in which the operation requested by one client cannot be

completed until an operation requested by another client has been performed. This can happen

when some clients are producers and others are consumers – the consumers may have to wait

until a producer has supplied some more of the commodity

in question. It can also occur when clients are sharing a resource – clients needing the

resource may have to wait for other clients to release it. The Java wait and notify methods

allow threads to communicate with one another in a manner that solves the above problems.

They must be used within synchronized methods of an object. A thread calls wait on an

object so as to suspend itself and to allow another thread to execute a method of that object.

A thread calls notify to inform any thread waiting on that object that it has changed some of

its data. Access to an object is still atomic when threads wait for one another: a thread that

calls wait gives up its lock and suspends itself as a single atomic action; when a thread is

restarted after being notified it acquires a new lock on the object and resumes execution from

after its wait. A thread that calls notify (from within a synchronized method) completes the

execution of that method before releasing the lock on the object. Consider the

implementation of a shared Queue object with two methods: first removes and returns the

first object in the queue, and append adds a given object to the end of the queue. The method

first will test whether the queue is empty, in which case it will call wait on the queue. If a

client invokes first when the queue is empty, it will not get a reply until another client has

added something to the queue – the append operation will call notify when it has added an

object to the queue. This allows one of the threads waiting on the queue object to resume and

DISTRIBUTED SYSTEMS AY 2025-26

Page 124

to return the first object in the queue to its client. When threads can synchronize their actions

on an object by means of wait and notify, the server holds onto requests that cannot

immediately be satisfied and the client waits for a reply until another client has produced

whatever it needs.

Failure model for transactions Lampson [1981] proposed a fault model for distributed

transactions that accounts for failures of disks, servers and communication. In this model, the

claim is that the algorithms work correctly in the presence of predictable faults, but no claims

are made about their behaviour when a disaster occurs. Although errors may occur, they can

be detected and dealt with before any incorrect behaviour results. The model states the

following:

• Writes to permanent storage may fail, either by writing nothing or by writing a wrong value –

for example, writing to the wrong block is a disaster. File storage may also decay. Reads from

permanent storage can detect (by a checksum) when a block of data is bad. • Servers may

crash occasionally. When a crashed server is replaced by a new process, its volatile memory is

first set to a state in which it knows none of the values (for example, of objects) from before

the crash. After that it carries out a recovery procedure using information in permanent

storage and obtained from other processes to set the values of objects including those related

to the two-phase commit protocol When a processor is faulty, it is made to crash so that it is

prevented from sending erroneous messages and from writing wrong values to permanent storage –

that is, so it cannot produce arbitrary failures.

Crashes can occur at any time; in particular, they may occur during recovery. • There may be

an arbitrary delay before a message arrives. A message may be lost, duplicated or corrupted.

The recipient can detect corrupted messages using a checksum. Both forged messages and

undetected corrupt messages are regarded as disasters.The fault model for permanent storage,

processors and communications was used to design a stable system whose components can

survive any single fault and present a simple failure model. In particular, stable storage

provided an atomic write operation inthe presence of a single fault of the write operation or a

crash failure of the process. This was achieved by replicating each block on two disk blocks.

A write operation wasapplied to the pair of disk blocks, and in the case of a single fault, one

good block wasalways available. A stable processor used stable storage to enable it to

recover itsobjects after a crash.

 Communication errors were masked by using a reliable remote procedure calling

mechanism.

DISTRIBUTED SYSTEMS AY 2025-26

Page 125

Transactions

In some situations, clients require a sequence of separate requests to a server to be atomic in

the sense that:

1. They are free from interference by operations being performed on behalf of other concurrent

clients.

2. Either all of the operations must be completed successfully or they must have no effect at all in

the presence of server crashes.

 client’s banking transaction

 Transaction T:

 a.withdraw(100); b.deposit(100); c.withdraw(200); b.deposit(200);

We return to our banking example to illustrate transactions. A client that performs a sequence

of operations on a particular bank account on behalf of a user will first lookup the account by

name and then apply the deposit, withdraw and getBalance operations directly to the relevant

account. In our examples, we use accounts with names A, B and C. The client looks them up

and stores references to them in variables a, b and c of type Account. The details of looking up

the accounts by name and the declarations of the variables are omitted from the

examples.example of a simple client transaction specifying a series of related actions

involving the bank accounts A, B and C. The first two actions transfer $100 from A to B and

the second two transfer $200 from C to B. A client achieves atransfer operation by doing a

withdrawal followed by a deposit. In all of these contexts, a transaction applies to recoverable

objects and is intended to be atomic. It is often called an atomic transaction. There are two

aspects to atomicity:All or nothing: A transaction either completes successfully, in which case

the effects of all of its operations are recorded in the objects, or (if it fails or is deliberately

aborted) has no effect at all. This all-or-nothing effect has two further aspects of its own:

Failure atomicity: The effects are atomic even when the server crashes Durability: After a

transaction has completed successfully, all its effects are saved in permanent storage. We use

the term ‘permanent storage’ to refer to files held on disk or another permanent medium. Data

saved in a file will survive if the server process crashes.

Isolation: Each transaction must be performed without interference from other

transactions; in other words, the intermediate effects of a transaction must not be visible to

other transactions. The box below introduces a mnemonic, ACID, for remembering the

properties of atomic transactions

To support the requirement for failure atomicity and durability, the objects must be

recoverable; that is, when a server process crashes unexpectedly due to a hardware fault or a

DISTRIBUTED SYSTEMS AY 2025-26

Page 126

software error, the changes due to all completed transactions must be available in permanent

storage so that when the server is replaced by a new process, it can recover the objects to

reflect the all-or-nothing effect. By the time a server acknowledges the completion of a

client’s transaction, all of the transaction’s changes to the objects must have been recorded in

permanent storage.

server that supports transactions must synchronize the operations sufficiently to ensure that

the isolation requirement is met. One way of doing this is to perform the transactions serially

– one at a time, in some arbitrary order. Unfortunately, this solution would generally be

unacceptable for servers whose resources are shared by multiple interactive users. For

instance, in our banking example it is desirable to allow several bank clerks to perform online

banking transactions at the same time as one another.

The aim for any server that supports transactions is to maximize concurrency. Therefore

transactions are allowed to execute concurrently if this would have the same effect as a serial

execution – that is, if they are serially equivalent or serializable.

Operations in the Coordinator interface

openTransaction() o trans;

Starts a new transaction and delivers a unique TID trans. This identifier will be used in the

other operations in the transaction.

closeTransaction(trans)o (commit, abort);

Ends a transaction: a commit return value indicates that the transaction has

committed; an abort return value indicates that it has aborted.

abortTransaction(trans);

Aborts the transaction.

Transaction capabilities can be added to servers of recoverable objects. Each transaction is

created and managed by a coordinator, which implements the Coordinator interface shown in

Figure 16.3. The coordinator gives each transaction an identifier, or TID. The client invokes

the openTransaction method of the coordinator to introduce a new transaction – a transaction

identifier or TID is allocated and returned. At the end of a transaction, the client invokes the

closeTransaction method to indicate its end – all of the recoverable objects accessed by the

transaction should be saved. If, for some reason, the client wants to abort a transaction, it

invokes the abortTransaction method – all of its effects should be removed from sight.

transaction is achieved by cooperation between a client program, some recoverable objects and

a coordinator. The client specifies the sequence of invocations on recoverable objects that are

to comprise a transaction. To achieve this, the client sends with each invocation the

DISTRIBUTED SYSTEMS AY 2025-26

Page 127

transaction identifier returned by openTransaction. One way to make this possible is to

include an extra argument in each operation of a recoverable object to carry the TID. For

example, in the banking service the deposit operation might be defined:

deposit(trans, amount)

Deposits amount in the account for transaction with TID trans

When transactions are provided as middleware, the TID can be passed implicitly with all

remote invocations between openTransaction and closeTransaction or abortTransaction. This

is what the CORBA Transaction Service does. We shall not show TIDs in our examples.

Normally, a transaction completes when the client makes a closeTransaction request. If the

transaction has progressed normally, the reply states that the transaction is committed – this

constitutes a promise to the client that all of the changes requested in the transaction are

permanently recorded and that any future transactions that access the same data will see the

results of all of the changes made during the transaction.

 Alternatively, the transaction may have to abort for one of several reasons related to the

nature of the transaction itself, to conflicts with another transaction or to the crashing of a

process or computer.

When a transaction is aborted the parties involved (the recoverable objects and the

coordinator) must ensure that none of its effects are visible to future transactions, either in the

objects or in their copies in permanent storage.

Figure 16.4

 Transaction life
histories

openTransaction openTransaction openTransaction

operation operation operation

operation operation operation

• • server aborts •

• • transaction o •
operation ERROR

operation operation

abortTransactio

reported to clien

Successful Aborted by client Aborted by server

DISTRIBUTED SYSTEMS AY 2025-26

Page 128

 closeTransaction n

 shows these three alternative life histories for transactions. We refer to a transaction as failing in

both of the latter cases.

 Service actions related to process crashes • If a server process crashes unexpectedly, it is

eventually replaced. The new server process aborts any uncommitted transactions and uses a

recovery procedure to restore the values of the objects to the values produced by the most

recently committed transaction. To deal with a client that crashes unexpectedly during a

transaction, servers can give each transaction an expiry time and abort any transaction that

has not completed before its expiry time.

 Client actions related to server process crashes • If a server crashes while a transaction is

in progress, the client will become aware of this when one of the operations returns an

exception after a timeout. If a server crashes and is then replaced during the progress of

transaction, the transaction will no longer be valid and the client must be informed via an

exception to the next operation. In either case, the client must then formulate a plan, possibly

in consultation with the human user, for the completion or abandonment of the task of which

the transaction was a part.

 Concurrency control

This section illustrates two well-known problems of concurrent transactions in the context of

the banking example – the ‘lost update’ problem and the ‘inconsistent retrievals’ problem. We

then show how both of these problems can be avoided by using serially equivalent executions

of transactions. We assume throughout that each of the operations deposit, withdraw,

getBalance and setBalance is a synchronized operation – that is, that its effects on the instance

variable that records the balance of an account are atomic.

The lost update problem • The lost update problem is illustrated by the following pair of

transactions on bank accounts A, B and C, whose initial balances are $100, $200 and $300,

respectively. Transaction T transfers an amount from account A to account B. Transaction U

transfers an amount from account C to account B. In both cases, the amount transferred is

calculated to increase the balance of B by 10%. The net effects on account B of executing the

transactions T and U should be to increase the balance of account B by 10% twice, so its final

value is $242.

 Now consider the effects of allowing the transactions T and U to run concurrently, as in

DISTRIBUTED SYSTEMS AY 2025-26

Page 129

Figure 16.5. Both transactions get the balance of B as $200 and then deposit $20. The result

is incorrect, increasing the balance of account B by $20 instead of $42. This is an illustration

of the ‘lost update’ problem. U’s update is lost because T overwrites it without seeing it. Both

transactions have read the old value before either writes the new value.

In Figure onwards, we show the operations that affect the balance of an account on

successive lines down the page, and the reader should assume that an operation on a

particular line is executed at a later time than the one on the line above it.

balance =
b.getBalance(); $200

b.setBalance(balan

ce*1.1

); $220

a.withdraw(balanc

e/10) $80

balance = b.getBalance(); $200

b.setBalance(balance*1.1
); $220

c.withdraw(balance/10) $280

amount transferred is calculated to increase the balance of B by 10%. The net effects on

account B of executing the transactions T and U should be to increase the balance of

account B by 10% twice, so its final value is $242.

Now consider the effects of allowing the transactions T and U to run concurrently, as in

Figure 16.5. Both transactions get the balance of B as $200 and then deposit $20. The result is

incorrect, increasing the balance of account B by $20 instead of $42. This is an illustration of

the ‘lost update’ problem. U’s update is lost because T overwrites it without seeing it. Both

transactions have read the old value before either writes the new value.

Transaction T:

balance = b.getBalance();

b.setBalance(balance*1.1

);

a.withdraw(balance/10)

Transaction U:

balance = b.getBalance();

b.setBalance(balance*1.1

);

c.withdraw(balance/10)

DISTRIBUTED SYSTEMS AY 2025-26

Page 130

Transaction T:
balance = b.getBalance()

b.setBalance(balance*1.1

)

a.withdraw(balance/10)

Transaction U:
balance = b.getBalance()

b.setBalance(balance*1.1)

c.withdraw(balance/10)

In Figure 16.5 onwards, we show the operations that affect the balance of an account on

successive lines down the page, and the reader should assume that an operation on a particular

line is executed at a later time than the one on the line above it.

Inconsistent retrievals • Figure 16.6 shows another example related to a bank account in

which transaction V transfers a sum from account A to B and transaction W invokes the

branchTotal method to obtain the sum of the balances of all the accounts in the bank.

 The inconsistent retrievals problem

a.withdraw(100); $100

total = a.getBalance() $100

total = total +

b.getBalance() $300

total = total + c.getBalance()

b.deposit(100) $300 •

•

A serially equivalent interleaving of T and U

balance =

b.getBalance() $200

b.setBalance(balan
ce*1.1
) $220

a.withdraw(balanc

e/10) $80

balance = b.getBalance() $220

b.setBalance(balance*1.1) $242

c.withdraw(balance/10) $278

Transaction V:

a.withdraw(100)

b.deposit(100)

Transaction W:

aBranch.branchTotal()

DISTRIBUTED SYSTEMS AY 2025-26

Page 131

The balances of the two bank accounts, A and B, are both initially $200. The result of

branchTotal includes the sum of A and B as $300, which is wrong. This is an illustration of the

‘inconsistent retrievals’ problem. W’s retrievals are inconsistent because V has performed only

the withdrawal part of a transfer at the time the sum is calculated.

Serial equivalence • If each of several transactions is known to have the correct effect when it

is done on its own, then we can infer that if these transactions are done one at a time in some

order the combined effect will also be correct. An interleaving of the operations of transactions

in which the combined effect is the same as if the transactions had been performed one at a time

in some order is a serially equivalent interleaving. When we say that two different transactions

have the same effect as one another, we mean that the read operations return the same values

and that the instance variables of the objects have the same values at the end.

The use of serial equivalence as a criterion for correct concurrent execution prevents the

occurrence of lost updates and inconsistent retrievals.

The lost update problem occurs when two transactions read the old value of a variable and then

use it to calculate the new value. This cannot happen if one transaction is performed before the

other, because the later transaction will read the value written by the earlier one. As a serially

equivalent interleaving of two transactions produces the same effect as a serial one, we can

solve the lost update problem by means of serial equivalence. Figure 16.7 shows one such

interleaving in which the operations that affect the shared account, B, are actually serial, for

transaction T does all its operations on B before transaction U does. Another interleaving of T

and U that has this property is one in which transaction U completes its operations on account B

before transaction T starts.

We now consider the effect of serial equivalence in relation to the inconsistent retrievals

problem, in which transaction V is transferring a sum from account A to B and transaction W is

obtaining the sum of all the balances (see Figure 16.6). The inconsistent retrievals problem can

occur when a retrieval transaction runs concurrently with an update transaction. It cannot occur

if the retrieval transaction is performed before or after the update transaction. A serially

equivalent interleaving of a retrieval transaction and an update transaction, for example as in

Figure 16.8, will prevent inconsistent retrievals occurring.

DISTRIBUTED SYSTEMS AY 2025-26

Page 132

A serially equivalent interleaving of V and W

a.withdraw(100); $100

b.deposit(100) $300

total = a.getBalance() $100

total = total +
b.getBalance() $400

total = total +

c.getBalance()

...

Conflicting operations • When we say that a pair of operations conflicts we mean that their

combined effect depends on the order in which they are executed. To simplify matters we

consider a pair of operations, read and write. read accesses the value of an object and write

changes its value. The effect of an operation refers to the value of an object set by a write

operation and the result returned by a read operation. The conflict rules for read and write

operations are given in Figure 16.9.

For any pair of transactions, it is possible to determine the order of pairs of conflicting

operations on objects accessed by both of them. Serial equivalence can be defined in terms of

operation conflicts as follows:

For two transactions to be serially equivalent, it is necessary and sufficient that all pairs of

conflicting operations of the two transactions be executed in the same order at all of the objects

they both access.

aBranch.branchTotal() a.withdraw(100);

b.deposit(100)

Transaction W: Transaction V:

DISTRIBUTED SYSTEMS AY 2025-26

Page 133

Figure

16.9 Read and write operation conflict rules

Because the effect of a pair of read
operations does

read read No
not depend on the order in which they are

executed

Because the effect of a read and a write

operation

depends on the order of their execution

Because the effect of a pair of write

operations

depends on the order of their execution

Figure 16.10 A non–serially-equivalent interleaving of operations of transactions T and U

x = read(i)

write(i, 10)

y = read(j)

write(j, 30)

write(j, 20)

z = read (i)

Consider as an example the transactions T and U, defined as follows:

T: x = read(i); write(i, 10); write(j, 20);

U: y = read(j); write(j, 30); z = read (i);

Then consider the interleaving of their executions, shown in Figure 16.10. Note that each

transaction’s access to objects i and j is serialized with respect to one another, because T makes

all of its accesses to i before U does and U makes all of its accesses to j before T does. But the

ordering is not serially equivalent, because the pairs of conflicting operations are not done in

the same order at both objects. Serially equivalent orderings require one of the following two

conditions:

T accesses i before U and T accesses j before U. accesses i before T and U accesses j before T.

Serial equivalence is used as a criterion for the derivation of concurrency control protocols.

These protocols attempt to serialize transactions in their access to objects. Three alternative

approaches to concurrency control are commonly used: locking, optimistic concurrency control

and timestamp ordering. However, most practical systems use locking, which is discussed in

read write Yes

write

write

Yes

Operations of

different

transactions

Confli

ct Reason

Transaction T: Transaction U:

DISTRIBUTED SYSTEMS AY 2025-26

Page 134

Section 16.4. When locking is used, the server sets a lock, labelled with the transaction

identifier, on each object just before it is accessed and removes these locks when the

transaction has completed. While an object is locked, only the transaction that it is locked for

can access that object; other transactions must either wait until the object is unlocked or, in

some cases, share the lock. The use of locks can lead to deadlocks, with transactions waiting

for each other to release locks – for example, when a pair of transactions each has an object

locked that the other needs to access. We discuss the deadlock problem and some remedies for

it in Section 16.4.1.

Optimistic concurrency control is described in Section 16.5. In optimistic schemes, a

transaction proceeds until it asks to commit, and before it is allowed to commit the server

performs a check to discover whether it has performed operations on any objects that conflict

with the operations of other concurrent transactions, in which case the server aborts it and the

client may restart it. The aim of the check is to ensure that all the objects are correct.

Timestamp ordering is described in Section 16.6. In timestamp ordering, a server records the

most recent time of reading and writing of each object and for each

Figure 16.11 A dirty read when transaction T aborts

Transacti

on T:
a.getBalanc

e()

a.setBalanc

e(balance +

10)

balance =
a.getBalanc
e() $100
a.setBalanc
e(balance +

10) $110

abort

transaction

Transaction U: a.getBalance()

a.setBalance(balance + 20)

balance = a.getBalance() $110
a.setBalance(balance +

20) $130

commit transaction

DISTRIBUTED SYSTEMS AY 2025-26

Page 135

operation, the timestamp of the transaction is compared with that of the object to determine

whether it can be done immediately or must be delayed or rejected. When an operation is

delayed, the transaction waits; when it is rejected, the transaction is aborted.

Basically, concurrency control can be achieved either by clients’ transactions waiting for one

another or by restarting transactions after conflicts between operations have been detected, or

by a combination of the two.

 Recoverability from aborts

Servers must record all the effects of committed transactions and none of the effects of aborted

transactions.They must therefore allow for the fact that a transaction may abort by preventing it

affecting other concurrent transactions if it does so.

This section illustrates two problems associated with aborting transactions in the context of the

banking example. These problems are called ‘dirty reads’ and ‘premature writes’, and both of

them can occur in the presence of serially equivalent executions of transactions. These issues

are concerned with the effects of operations on objects such as the balance of a bank account.

To simplify things, operations are considered in two categories: read operations and write

operations. In our illustrations, getBalance is a read operation and setBalance a write operation.

Dirty reads •

The isolation property of transactions requires that transactions do not see the uncommitted

state of other transactions. The ‘dirty read’ problem is caused by the interaction between a

read operation in one transaction and an earlier write operation in another transaction on

the same object. Consider the executions illustrated in Figure 16.11, in which T gets the

balance of account A and sets it to $10 more, then U gets the balance of account A and sets it

to $20 more, and the two executions are serially equivalent. Now suppose that the

transaction T aborts after U has committed. Then the transaction U will have seen a value

that never existed, since A will be restored to its original value. We say that the transaction

U has performed a dirty read. As it has committed, it cannot be undone.

DISTRIBUTED SYSTEMS AY 2025-26

Page 136

Figure 16.12 Overwriting uncommitted

values

$100

a.setBalance(105) $105

a.setBalance(110)

Recoverability of

transactions •

 If a transaction (like U) has committed after it has seen

 the effects of a transaction that subsequently aborted, the situation is not recoverable. To

ensure that such situations will not arise, any transaction (like U) that is in danger of having a

dirty read delays its commit operation. The strategy for recoverability is to delay commits

until after the commitment of any other transaction whose uncommitted state has been

observed. In our example, U delays its commit until after T commits. In the case that T

aborts, then U must abort as well.

Cascading aborts • In Figure 16.11, suppose that transaction U delays committing until after

T aborts. As we have said, U must abort as well. Unfortunately, if any other transactions have

seen the effects due to U, they too must be aborted. The aborting of these latter transactions

may cause still further transactions to be aborted. Such situations are called cascading

aborts. To avoid cascading aborts, transactions are only allowed to read objects that were

written by committed transactions. To ensure that this is the case, any read operation must be

delayed until other transactions that applied a write operation to the same object have

committed or aborted. The avoidance of cascading aborts is a stronger condition than

recoverability.

Premature writes • Consider another implication of the possibility that a transaction may

abort. This one is related to the interaction between write operations on the same object

belonging to different transactions. For an illustration, we consider two setBalance

transactions, T and U, on account A, as shown in Figure 16.12. Before the transactions, the

balance of account A was $100. The two executions are serially equivalent, with T setting the

balance to $105 and U setting it to $110. If the transaction U aborts and T commits, the

balance should be $105.

Transaction T:

a.setBalance(105)

Transaction U:

a.setBalance(110)

DISTRIBUTED SYSTEMS AY 2025-26

Page 137

Some database systems implement the action of abort by restoring ‘before images’ of all

the writes of a transaction. In our example, A is $100 initially, which is the ‘before image’ of

T’s write; similarly, $105 is the ‘before image’ of U’s write. Thus if U aborts, we get the

correct balance of $105.

Now consider the case when U commits and then T aborts. The balance should be $110, but as

the ‘before image’ of T’s write is $100, we get the wrong balance of $100. Similarly, if T aborts

and then U aborts, the ‘before image’ of U’s write is $105 and we get the wrong balance of

$105 – the balance should revert to $100.

To ensure correct results in a recovery scheme that uses before images, write operations must

be delayed until earlier transactions that updated the same objects have either committed or

aborted.

Strict executions of transactions • Generally, it is required that transactions delay both their

read and write operations so as to avoid both dirty reads and premature writes. The executions

of transactions are called strict if the service delays both read and write operations on an object

until all transactions that previously wrote that object have either committed or aborted. The

strict execution of transactions enforces the desired property of isolation.

Tentative versions • For a server of recoverable objects to participate in transactions, it must be

designed so that any updates of objects can be removed if and when a transaction aborts. To

make this possible, all of the update operations performed during a transaction are done in

tentative versions of objects in volatile memory. Each transaction is provided with its own

private set of tentative versions of any objects that it has altered. All the update operations of a

transaction store values in the transaction’s own private set. Access operations in a transaction

take values from the transaction’s own private set if possible, or failing that, from the

objects.The tentative versions are transferred to the objects only when a transaction commits, by

which time they will also have been recorded in permanent storage. This is performed in a single

step, during which other transactions are excluded from access to the objects that are being altered.

When a transaction aborts, its tentative versions are deleted.

Nested transactions

Nested transactions extend the above transaction model by allowing transactions to be

composed of other transactions. Thus several transactions may be started from within a

transaction, allowing transactions to be regarded as modules that can be composed as required.

The outermost transaction in a set of nested transactions is called the top-level transaction.

DISTRIBUTED SYSTEMS AY 2025-26

Page 138

T1 = openSubTransaction T2 = openSubTransaction

openSubTransaction

openSubTransaction openSubTransaction openSubTransaction

Transactions other than the top-level transaction are called subtransactions. For example, in

Figure 16.13, T is a top-level transaction that starts a pair of subtransactions, T1 and T2. The

subtransaction T1 starts its own pair of subtransactions, T11 and T22. Also, subtransaction T2

starts its own subtransaction, T21, which starts another subtransaction, T211.

A subtransaction appears atomic to its parent with respect to transaction failures and to

concurrent access. Subtransactions at the same level, such as T1 and T2, can run concurrently,

but their access to common objects is serialized – for example, by the locking scheme

described in Section 16.4. Each subtransaction can fail independently of its parent and of the

other subtransactions. When a subtransaction aborts, the parent transaction can sometimes

choose an alternative subtransaction to complete its task. For example, a transaction to deliver

a mail message to a list of recipients could be structured as a set of subtransactions, each of

which delivers the message to one of the recipients. If one or more of the subtransactions fails,

the parent transaction could record the fact and then commit, with the result that all the

successful child transactions commit. It could then start another transaction to attempt to

redeliver the messages that were not sent the first time.

\

Figure 16.13 Nested transactions

: top-level transaction

commit

T1 : T2 :

provisional commit abort

T11 : T12 : T21 :

provisional commit provisional commit T :
211

provisional commit

provisional commit

When we need to distinguish our original form of transaction from nested ones, we use the

term flat transaction. It is flat because all of its work is done at the same level between an

openTransaction and a commit or abort, and it is not possible to commit or abort parts of it.

Nested transactions have the following main advantages:

Subtransactions at one level (and their descendants) may run concurrently with other

subtransactions at the same level in the hierarchy. This can allow additional concurrency in a

transaction. When subtransactions run in different servers, they can work in parallel. For

example, consider the branchTotal operation in our banking example. It can be implemented

by invoking getBalance at every account in the branch. Now each of these invocations may

be performed as a subtransaction, in which case they can be performed

DISTRIBUTED SYSTEMS AY 2025-26

Page 139

 concurrently. Since each one applies to a different account, there will be no conflicting

operations among the subtransactions.

Subtransactions can commit or abort independently. In comparison with a single transaction, a

set of nested subtransactions is potentially more robust. The above example of delivering mail

shows that this is so – with a flat transaction, one transaction failure would cause the whole

transaction to be restarted. In fact, a parent can decide on different actions according to

whether a subtransaction has aborted or not.

The rules for committing of nested transactions are rather subtle:

A transaction may commit or abort only after its child transactions have completed.

 When a subtransaction completes, it makes an independent decision either to commit

provisionally or to abort. Its decision to abort is final.

When a parent aborts, all of its subtransactions are aborted. For example, if T2 aborts then T21

and T211 must also abort, even though they may have provisionally committed.

 When a subtransaction aborts, the parent can decide whether to abort or not. In our example, T

decides to commit although T2 has aborted.

If the top-level transaction commits, then all of the subtransactions that have provisionally

committed can commit too, provided that none of their ancestors has aborted. In our example,

T’s commitment allows T1, T11 and T12 to commit, but not T21 and T211 since their parent, T2,

aborted. Note that the effects of a subtransaction are not permanent until the top-level

transaction commits.

 In some cases, the top-level transaction may decide to abort because one or more of its

subtransactions have aborted. As an example, consider the following Transfer transaction:

 Transfer $100 from B to A a.deposit(100) b.withdraw(100)

This can be structured as a pair of subtransactions, one for the withdraw operation and the

other for deposit. When the two subtransactions both commit, the Transfer transaction can also

commit. Suppose that a withdraw subtransaction aborts whenever an account is overdrawn.

Now consider the case when the withdraw subtransaction aborts and the deposit subtransaction

commits – and recall that the commitment of a child transaction is conditional on the parent

transaction committing. We presume that the top-level (Transfer) transaction will decide to

abort. The aborting of the parent transaction causes the subtransactions to abort – so the

deposit transaction is aborted and all its effects are undone.

DISTRIBUTED SYSTEMS AY 2025-26

Page 140

Locks

Transactions must be scheduled so that their effect on shared data is serially equivalent. A

server can achieve serial equivalence of transactions by serializing access to the objects. Figure

16.7 shows an example of how serial equivalence can be achieved with some degree of

concurrency – transactions T and U both access account B, but T completes its access before U

starts accessing it.

simple example of a serializing mechanism is the use of exclusive locks. In this locking

scheme, the server attempts to lock any object that is about to be used by any operation of a

client’s transaction. If a client requests access to an object that is already locked due to another

client’s transaction, the request is suspended and the client must wait until the object is

unlocked.

Figure 16.14 illustrates the use of exclusive locks. It shows the same transactions as Figure

16.7, but with an extra column for each transaction showing the locking, waiting and

unlocking. In this example, it is assumed that when transactions T and U start, the balances of

the accounts A, B and C are not yet locked. When transaction T is about to use account B, it is

locked for T. When transaction U is about to use B it is still

Figure 16.14 Transactions T and U with exclusive

locks

openTransaction

bal = b.getBalance() lock B

b.setBalance(bal*1.1) openTransaction

a.withdraw(bal/10) lock A bal = b.getBalance() waits for T’s

lock on B

closeTransaction unlock A, B • • •

lock B

b.setBalance(bal*1.1)

c.withdraw(bal/10) lock C

closeTransaction unlock B, C

Transaction T:

balance =

b.getBalance()

b.setBalance(bal*1.1)

a.withdraw(bal/10)

Operations Locks

Transaction U:

balance =

b.getBalance()

b.setBalance(bal*1.1)

c.withdraw(bal/10)

Operations Locks

DISTRIBUTED SYSTEMS AY 2025-26

Page 141

locked for T, so transaction U waits. When transaction T is committed, B is unlocked, where

upon transaction U is resumed. The use of the lock on B effectively serializes the access to B.

Note that if, for example, T released the lock on B between its getBalance and setBalance

operations, transaction U’s getBalance operation on B could be interleaved between them.

Serial equivalence requires that all of a transaction’s accesses to a particular object be

serialized with respect to accesses by other transactions. All pairs of conflicting operations of

two transactions should be executed in the same order. To ensure this, a transaction is not

allowed any new locks after it has released a lock. The first phase of each transaction is a

‘growing phase’, during which new locks are acquired. In the second phase, the locks are

released (a ‘shrinking phase’). This is called two-phase locking.

We saw that because transactions may abort, strict executions are needed to prevent dirty reads

and premature writes. Under a strict execution regime, a transaction that needs to read or write

an object must be delayed until other transactions that wrote the same object have committed

or aborted. To enforce this rule, any locks applied during the progress of a transaction are held

until the transaction commits or aborts. This is called strict two-phase locking. The presence of

the locks prevents other transactions reading or writing the objects. When a transaction

commits, to ensure recoverability, the locks must be held until all the objects it updated have

been written to permanent storageserver generally contains a large number of objects, and a

typical transaction accesses only a few of them and is unlikely to clash with other current

transactions. The granularity with which concurrency control can be applied to objects is an

important issue, since the scope for concurrent access to objects in a server will be limited

severely if concurrency control (for example, locks) can only be applied to all the objects at

once. In our banking example, if locks were applied to all customer accounts at a branch, only

one bank clerk could perform an online banking transaction at any time – hardly an acceptable

constraint!

 The portion of the objects to which access must be serialized should be as small as possible;

that is, just that part involved in each operation requested by transactions. In our banking

example, a branch holds a set of accounts, each of which has a balance. Each banking

operation affects one or more account balances – deposit and withdraw affect one account

balance, and branchTotal affects all of them.

 The description of concurrency control schemes given below does not assume any particular

granularity. We discuss concurrency control protocols that are applicable to objects whose

operations can be modelled in terms of read and write operations on the objects. For the

DISTRIBUTED SYSTEMS AY 2025-26

Page 142

protocols to work correctly, it is essential that each read and write operation is atomic in its

effects on objects.

 Concurrency control protocols are designed to cope with conflicts between operations in

different transactions on the same object. In this chapter, we use the notion of conflict between

operations to explain the protocols. The conflict rules for read and write operations are given

in Figure 16.9, which shows that pairs of read operations from different transactions on the

same object do not conflict. Therefore, a simple exclusive lock that is used for both read and

write operations reduces concurrency more than is necessary.

 It is preferable to adopt a locking scheme that controls the access to each object so that there

can be several concurrent transactions reading an object, or a single transaction writing an

object, but not both. This is commonly referred to as a ‘many readers/single writer’ scheme.

Two types of locks are used: read locks and write locks. Before a transaction’s read operation

is performed, a read lock should be set on the object. Before a transaction’s write operation is

performed, a write lock should be set on the object. Whenever it is impossible to set a lock

immediately, the transaction (and the client) must wait until it is possible to do so – a client’s

request is never rejected.

As pairs of read operations from different transactions do not conflict, an attempt to set a read

lock on an object with a read lock is always successful. All the transactions reading the same

object share its read lock – for this reason, read locks are sometimes called shared locks.

 The operation conflict rules tell us that:

If a transaction T has already performed a read operation on a particular object, then a

concurrent transaction

 U must not write that object until T commits or aborts.

 If a transaction T has already performed a write operation on a particular object, then a

concurrent transaction

 U must not read or write that object until T commits or aborts.

To enforce condition 1, a request for a write lock on an object is delayed by the presence of a

read lock belonging to another transaction. To enforce condition 2, a request for either a read

lock or a write lock on an object is delayed by the presence of a write lock belonging to another

transaction.

DISTRIBUTED SYSTEMS AY 2025-26

Page 143

Figure 16.15

Lock compatibility

For one object Lock requested

read write

Lock already set none

read

write

OK OK

OK wait

wait wait

Figure 16.15 shows the compatibility of read locks and write locks on any particular object. The entries

to the left of the first column in the table show the type of lock already set, if any. The entries above the

first row show the type of lock requested. The entry in each cell shows the effect on a transaction that

requests the type of lock given above when the object has been locked in another transaction with the

type of lock on the left.

Inconsistent retrievals and lost updates are caused by conflicts between read operations in one

transaction and write operations in another without the protection of a concurrency control scheme such

as locking. Inconsistent retrievals are prevented by performing the retrieval transaction before or after

the update transaction. If the retrieval transaction comes first, its read locks delay the update

transaction. If it comes second, its request for read locks causes it to be delayed until the update

transaction has completed.

Lost updates occur when two transactions read a value of an object and then use it to calculate a new

value. Lost updates are prevented by making later transactions delay their reads until the earlier ones

have completed. This is achieved by each transaction setting a read lock when it reads an object and

then promoting it to a write lock when it writes the same object – when a subsequent transaction

requires a read lock it will be delayed until any current transaction has completed.

 A transaction with a read lock that is shared with other transactions cannot promote its read

lock to a write lock, because the latter would conflict with the read locks held by the other

transactions. Therefore, such a transaction must request a write lock and wait for the other read

locks to be released.

Lock promotion refers to the conversion of a lock to a stronger lock – that is, a lock that is more

exclusive. The lock compatibility table in Figure 16.15 shows the relative exclusivity of locks.

The read lock allows other read locks, whereas the write lock does not. Neither allows other

DISTRIBUTED SYSTEMS AY 2025-26

Page 144

write locks. Therefore, a write lock is more exclusive than a read lock. Locks may be promoted

because the result is a more exclusive lock. It is not safe to demote a lock held by a transaction

before it commits, because the result will be more permissive than the previous one and may

allow executions by other transactions that are inconsistent with serial equivalence.

The rules for the use of locks in a strict two-phase locking implementation are summarized in

Figure 16.16. To ensure that these rules are adhered to, the client has no access to operations for

locking or unlocking items of data. Locking is performed when the requests for read and write

operations are about to be applied to the recoverable objects, and unlocking is performed by the

commit or abort operations of the transaction coordinator.

For example, the CORBA Concurrency Control Service [OMG 2000b] can be used to apply

concurrency control on behalf of transactions or to protect objects without using transactions.

It provides a means of associating a collection of locks (called a lockset) with a resource such

as a recoverable object. A lockset allows locks to be acquired or released. A lockset’s lock

method will acquire a lock or block until the lock is free; other methods allow locks to be

promoted or released. Transactional locksets support the same methods as locksets, but their

methods require transaction identifiers as arguments. We mentioned earlier that the CORBA

transaction service tags all client requests in a transaction with the transaction identifier. This

enables a suitable lock to be acquired before each of the recoverable objects is accessed

during a transaction. The transaction coordinator is responsible for releasing the locks when a

transaction commits or aborts.

The rules given in Figure 16.16 ensure strictness, because the locks are held until a

transaction has either committed or aborted. However, it is not necessary to hold read locks

to ensure strictness. Read locks need only be held until the request to commit or abort arrives.

Lock implementation • The granting of locks will be implemented by a separate object in

the server that we call the lock manager. The lock manager holds a set of locks, for example

in a hash table. Each lock is an instance of the class Lock and is associated with a particular

object. The class Lock is shown in Figure 16.17. Each instance of Lock maintains the

following information in its instance variables:the identifier of the locked object;

the transaction identifiers of the transactions that currently hold the lock (shared locks can

have several holders);

a lock type.

DISTRIBUTED SYSTEMS AY 2025-26

Page 145

Figure 16.17 Lock class

public class Lock {

private Object object; // the object being protected by the lock

private Vector holders; // the TIDs of current holders private LockType

lockType; // the current type

public synchronized void acquire(TransID trans, LockType aLockType){ while(/*another

transaction holds the lock in conflicting mode*/) {

try {

wait();

}catch (InterruptedException e){/*...*/ }

}

if (holders.isEmpty()) { // no TIDs hold lock

holders.addElement(trans); lockType = aLockType;

} else if (/*another transaction holds the lock, share it*/)){

if (/* this transaction not a holder*/) holders.addElement(trans);

} else if (/* this transaction is a holder but needs a more exclusive lock*/)

lockType.promote();

}

}

public synchronized void release(TransID trans){ holders.removeElement(trans); //

remove this holder

set locktype to none notifyAll();

}

}

The methods of Lock are synchronized so that the threads attempting to acquire or release a lock

will not interfere with one another. But, in addition, attempts to acquire the lock use the wait

method whenever they have to wait for another thread to release it.

The acquire method carries out the rules given in Figure 16.15 and Figure 16.16. Its arguments

specify a transaction identifier and the type of lock required by that transaction. It tests whether

the request can be granted. If another transaction holds the lock in a conflicting mode, it invokes

wait, which causes the caller’s thread to be suspended until a corresponding notify. Note that the

wait is enclosed in a while, because all waiters are notified and some of them may not be able to

proceed. When, eventually, the condition is satisfied, the remainder of the method sets the lock

appropriately:

if no other transaction holds the lock, just add the given transaction to the holders and set the type;

else if another transaction holds the lock, share it by adding the given transaction to the holders

(unless it is already a holder);

else if this transaction is a holder but is requesting a more exclusive lock, promote the lock.

DISTRIBUTED SYSTEMS AY 2025-26

Page 146

Figure 16.18 LockManager class

public class LockManager {

private Hashtable theLocks;

public void setLock(Object object, TransID trans, LockType lockType){ Lock

foundLock; synchronized(this){

find the lock associated with object

if there isn’t one, create it and add it to the hashtable

}

foundLock.acquire(trans, lockType);

}

synchronize this one because we want to remove all entries public synchronized void

unLock(TransID trans) {
Enumeration e = theLocks.elements(); while(e.hasMoreElements()){

Lock aLock = (Lock)(e.nextElement());

if(/* trans is a holder of this lock*/) aLock.release(trans);

}

}

}

The release method’s arguments specify the transaction identifier of the transaction that is

releasing the lock. It removes the transaction identifier from the holders, sets the lock type to none

and calls notifyAll. The method notifies all waiting threads in case there are multiple transactions

waiting to acquire read locks – all of them may be able to proceed.

The class LockManager is shown in Figure 16.18. All requests to set locks and to release them on

behalf of transactions are sent to an instance of LockManager:

The setLock method’s arguments specify the object that the given transaction wants to lock and

the type of lock. It finds a lock for that object in its hashtable or, if necessary, creates one. It then

invokes the acquire method of that lock.

The unLock method’s argument specifies the transaction that is releasing its locks. It finds all of

the locks in the hashtable that have the given transaction as a holder. For each one, it calls the

release method.

The reader is invited to consider the following:

What is the consequence for write transactions in the presence of a steady trickle of requests for

read locks? Think of an alternative implementation.

When the holder has a write lock, several readers and writers may be waiting. The reader should

consider the effect of notifyAll and think of an alternative implementation. If a holder of a read

lock tries to promote the lock when the lock is shared, it will be blocked. Is there any solution to

this difficulty?

DISTRIBUTED SYSTEMS AY 2025-26

Page 147

Locking rules for nested transactions • The aim of a locking scheme for nested transactions is to

serialize access to objects so that:

Each set of nested transactions is a single entity that must be prevented from observing the partial

effects of any other set of nested transactions.

Each transaction within a set of nested transactions must be prevented from observing the partial

effects of the other transactions in the set.

The first rule is enforced by arranging that every lock that is acquired by a successful

subtransaction is inherited by its parent when it completes. Inherited locks are also inherited by

ancestors. Note that this form of inheritance passes from child to parent! The top-level transaction

eventually inherits all of the locks that were acquired by successful subtransactions at any depth in

a nested transaction. This ensures that the locks can be held until the top-level transaction has

committed or aborted, which prevents members of different sets of nested transactions observing

one another’s partial effects.

The second rule is enforced as follows:

Parent transactions are not allowed to run concurrently with their child transactions. If a parent

transaction has a lock on an object, it retains the lock during the time that its child transaction is

executing. This means that the child transaction temporarily acquires the lock from its parent for

its duration.

Subtransactions at the same level are allowed to run concurrently, so when they access the same

objects, the locking scheme must serialize their access.

The following rules describe lock acquisition and release

For a subtransaction to acquire a read lock on an object, no other active transaction can have a

write lock on that object, and the only retainers of a write lock are its ancestors.

For a subtransaction to acquire a write lock on an object, no other active transaction can have a

read or write lock on that object, and the only retainers of read and write locks on that object are

its ancestors.

When a subtransaction commits, its locks are inherited by its parent, allowing the parent to retain

the locks in the same mode as the child.

When a subtransaction aborts, its locks are discarded. If the parent already retains the locks, it can

continue to do so.Note that subtransactions at the same level that access the same object will take

turns to acquire the locks retained by their parent. This ensures that their access to a common

object is serialized.

DISTRIBUTED SYSTEMS AY 2025-26

Page 148

As an example, suppose that subtransactions T1, T2 and T11 in Figure 16.13 all access a common

object, which is not accessed by the top-level transaction T. Suppose that subtransaction T1 is the

first to access the object and successfully acquires a lock,

Figure 16.19 Deadlock with write locks

Operations Locks Operations Locks
a.deposit(100); write lock A

b.deposit(200)

write lock B

b.withdraw(100)

••• waits for U’s a.withdraw(200); waits for T’s

•••

lock on B •••

•••

lock on A

which it passes on to T11 for the duration of its execution, getting it back when T11 completes.

When T1 completes its execution, the top-level transaction T inherits the lock, which it retains

until the set of nested transactions completes. The subtransaction T2 can acquire the lock from T

for the duration of its execution.

Definition of deadlock • Deadlock is a state in which each member of a group of transactions is

waiting for some other member to release a lock. A wait-for graph can be used to represent the

waiting relationships between current transactions. In a wait-for graph the nodes represent

transactions and the edges represent wait-for relationships between transactions – there is an edge

from node T to node U when transaction T is waiting for transaction U to release a lock.. Recall

that the deadlock arose because transactions T and U both attempted to acquire an object held by

the other. Therefore T waits for U and U waits for T. The dependency between transactions is

indirect, via a dependency on objects. The diagram on the right shows the objects held by and

waited for by transactions T and U. As each transaction can wait for only one object, the objects

can be omitted from the wait-for graph – leaving the simple graph on the left.

Deadlock prevention • One solution is to prevent deadlock. An apparently simple but not very

good way to overcome the deadlock problem is to lock all of the objects used by a transaction

when it starts. This would need to be done as a single atomic step so as to avoid deadlock at this

stage. Such a transaction cannot run into deadlocks with other transactions, but this approach

unnecessarily restricts access to shared resources. In addition, it is sometimes impossible to

predict at the start of a transaction which objects will be used.

Transaction T Transaction U

DISTRIBUTED SYSTEMS AY 2025-26

Page 149

This is generally the case in interactive applications, for the user would have to say in advance

exactly which objects they were planning to use – this is inconceivable in browsing-style

applications, which allow users to find objects they do not know about in advance. Deadlocks can

also be prevented by requesting locks on objects in a predefined order, but this can result in

premature locking and a reduction in concurrency.

Deadlock detection • Deadlocks may be detected by finding cycles in the wait-for graph. Having

detected a deadlock, a transaction must be selected for abortion to break the cycle.

The software responsible for deadlock detection can be part of the lock manager. It

must hold a representation of the wait-for graph so that it can check it for cycles from time to

time. Edges are added to the graph and removed from the graph by the lock manager’s setLock

and unLock operations.

Transaction T Transaction U

Locks Operations Locks

write lock A

b.deposit(200)

write lock B

waits for U’s a.withdraw(200); waits for T’s

lock on B

(timeout elapses)

•••

•••

lock on A

T’s lock on A becomes

vulnerable,

unlock A, abort T

a.withdraw(200); write lock A

unlock A, B

Note that when lock is shared, several edges may be added. An edge T o U is deleted

whenever U releases a lock that T is waiting for and allows T to proceed. See Exercise 16.14

for a more detailed discussion of the implementation of deadlock detection. If a transaction

shares a lock, the lock is not released, but the edges leading to a particular transaction are

removed.

The presence of cycles may be checked each time an edge is added, or less frequently to

avoid unnecessary overhead. When a deadlock is detected, one of the transactions in the

cycle must be chosen and then be aborted. The corresponding node and the edges involving it

must be removed from the wait-for graph. This will happen when the aborted transaction has

its locks removed.

DISTRIBUTED SYSTEMS AY 2025-26

Page 150

The choice of the transaction to abort is not simple. Some factors that may be taken into

account are the age of the transaction and the number of cycles in which it is involved.

commit wait wait –

transactions are aborted because deadlocks have occurred and a choice can be made as to which

transaction to abort.

Using lock timeouts, we can resolve the deadlock as shown in the above Figure in which the

write lock for T on A becomes vulnerable after its timeout period. Transaction U is waiting to

acquire a write lock on A. Therefore, T is aborted and it releases its lock on A, allowing U to

resume and complete the transaction.

When transactions access objects located in several different servers, the possibility of distributed

deadlocks arises. In a distributed deadlock, the wait-for graph can involve objects at multiple

locations

Increasing concurrency in locking schemes

Even when locking rules are based on the conflicts between read and write operations and the

granularity at which they are applied is as small as possible, there is still some scope for

increasing concurrency. We discuss two approaches that have been used to deal with this issue. In

the first approach (two-version locking), the setting of exclusive locks is delayed until a

transaction commits. In the second approach (hierarchic locks), mixed-granularity locks are used.

Two-version locking • This is an optimistic scheme that allows one transaction to write tentative

versions of objects while other transactions read from the committed versions of the same objects.

read operations only wait if another transaction is currently committing the same object. This

scheme allows more concurrency than read-write locks, but writing transactions risk waiting or

even rejection when they attempt to commit. Transactions cannot commit their write operations

immediately if other uncompleted transactions have read the same objects. Therefore, transactions

that request to commit in such a situation are made to wait until the reading transactions have

For one object

read

Lock to be

set
write

com

 mit

Lock already set none

read

write

 OK

OK

OK

OK

OK

wait

OK

wait

–

DISTRIBUTED SYSTEMS AY 2025-26

Page 151

completed. Deadlocks may occur when transactions are waiting to commit. Therefore,

transactions may need to be aborted when they are waiting to commit, to resolve deadlocks.

This variation on strict two-phase locking uses three types of lock: a read lock, a write lock and a

commit lock. Before a transaction’s read operation is performed, a read lock must be set on the

object – the attempt to set a read lock is successful unless the object has a commit lock, in which

case the transaction waits. Before a transaction’s

Lock hierarchy for the banking example

Branch

A B C Account

write operation is performed, a write lock must be set on the object – the attempt to set

write lock is successful unless the object has a write lock or a commit lock, in which case the

transaction waits.

When the transaction coordinator receives a request to commit a transaction, it attempts to convert

all that transaction’s write locks to commit locks. If any of the objects have outstanding read

locks, the transaction must wait until the transactions that set these locks have completed and the

locks are released. The compatibility of read, write and commit locks is shown in Figure 16.24.

There are two main differences in performance between the two-version locking scheme and an

ordinary read-write locking scheme. On the one hand, read operations in the two-version locking

scheme are delayed only while the transactions are being committed, rather than during the entire

execution of transactions – in most cases, the commit protocol takes only a small fraction of the

time required to perform an entire transaction. On the other hand, read operations of one

transaction can cause delays in committing other transactions.

Hierarchic locks • In some applications, the granularity suitable for one operation is not

appropriate for another operation. In our banking example, the majority of the operations require

locking at the granularity of an account. The branchTotal operation is different – it reads the

values of all the account balances and would appear to require ead lock on all of them. To reduce

locking overhead, it would be useful to allow locks of mixed granularity to coexist.

Gray [1978] proposed the use of a hierarchy of locks with different granularities. At each level,

the setting of a parent lock has the same effect as setting all the equivalent child locks. This

DISTRIBUTED SYSTEMS AY 2025-26

Page 152

economizes on the number of locks to be set. In our banking example, the branch is the parent and

the accounts are children (see Figure 16.25).

Mixed-granularity locks could be useful in a diary system in which the data could be structured

with the diary for a week being composed of a page for each day and the Lock hierarchy for a

diary

Week

Monday Tuesday Wednesday Thursday Friday

9:00–10:00 10:00–11:00 11:00–12:00 12:00–13:00 13:00–14:00 14:00–15:00 15:00–16:00

Lock compatibility table for hierarchic locks

For one object

read

Lock

write

to be set

I-read

I-write

Lock already set none OK OK OK OK

 read OK wait OK wait

 write wait wait wait wait

 I-read OK wait OK OK

 I-write wait wait OK OK

timeslots

DISTRIBUTED SYSTEMS AY 2025-26

Page 153

latter subdivided further into a slot for each hour of the day, as shown in Figure 16.26. The

operation to view a week would cause a read lock to be set at the top of this hierarchy, whereas the

operation to enter an appointment would cause a write lock to be set on a given time slot. The

effect of a read lock on a week would be to prevent write operations on any of the substructures –

for example, the time slots for each day in that week.

In Gray’s scheme, each node in the hierarchy can be locked, giving the owner of the lock explicit

access to the node and giving implicit access to its children. In our example, a read-write lock

on the branch implicitly read-write locks all the accounts. Before a child node is granted a read-

write lock, an intention to read-write lock is set on the parent node and its ancestors (if any). The

intention lock is compatible with other intention locks but conflicts with read and write locks

according to the usual rules. Figure 16.27 gives the compatibility table for hierarchic locks. Gray

also proposed a third type of intention lock – one that combines the properties of a read lock with

an intention to write lock.

In our banking example, the branchTotal operation requests a read lock on the branch, which

implicitly sets read locks on all the accounts. A deposit operation needs to set a write lock on a

balance, but first it attempts to set an intention to write lock on the branch. These rules prevent

these operations running concurrently.

Hierarchic locks have the advantage of reducing the number of locks when mixed-granularity

locking is required. The compatibility tables and the rules for promoting locks are more complex.

The mixed granularity of locks could allow each transaction to lock a portion whose size is chosen

according to its needs. A long transaction that accesses many objects could lock the whole

collection, whereas a short transaction can lock at finer granularity.

The CORBA Concurrency Control Service supports variable-granularity locking with intention
to read and

DISTRIBUTED SYSTEMS AY 2025-26

Page 154

intention to write lock types. These can be used as described above to take advantage the

opportunity to apply locks at differing granularities in hierarchically structured data.

Optimistic concurrency control
Lock maintenance represents an overhead that is not present in systems that do not support

concurrent access to shared data. Even read-only transactions (queries), which cannot possibly

affect the integrity of the data, must, in general, use locking in order to guarantee that the data

being read is not modified by other transactions at the same time. But locking may be necessary

only in the worst case.

For example, consider two client processes that are concurrently incrementing the values of n

objects. If the client programs start at the same time and run for about the same amount of time,

accessing the objects in two unrelated sequences and using a separate transaction to access and

increment each item, the chances that the two programs will attempt to access the same object at

the same time are just 1 in n on average, so locking is really needed only once in every n

transactions.

The use of locks can result in deadlock. Deadlock prevention reduces concurrency severely, and

therefore deadlock situations must be resolved either by the use of timeouts or by deadlock

detection. Neither of these is wholly satisfactory for use in interactive programs.

To avoid cascading aborts, locks cannot be released until the end of the transaction. This may

reduce significantly the potential for concurrency.

The alternative approach proposed by Kung and Robinson is ‘optimistic’ because it is based on

the observation that, in most applications, the likelihood of two clients’ transactions accessing the

same object is low. Transactions are allowed to proceed as though there were no possibility of

conflict with other transactions until the client completes its task and issues a closeTransaction

request. When a conflict arises, some transaction is generally aborted and will need to be restarted

by the client. Each transaction has the following phases:

Working phase: During the working phase, each transaction has a tentative version of each of the

objects that it updates. This is a copy of the most recently committed version of the object. The

use of tentative versions allows the transaction to abort (with no effect on the objects), either

during the working phase or if it fails validation due to other conflicting transactions. read

operations are performed immediately – if

tentative version for that transaction already exists, a read operation accesses it; otherwise, it

accesses the most recently committed value of the object. write operations record the new values

of the objects as tentative values (which are invisible to other transactions). When there are

DISTRIBUTED SYSTEMS AY 2025-26

Page 155

several concurrent transactions, several different tentative values of the same object may

coexist. In addition, two records are kept of the objects accessed within a transaction: a read set

containing the objects read by the transaction and a write set containing the objects written by the

transaction. Note that as all read operations are performed on committed versions of the objects

(or copies of them), dirty reads cannot occur.

Validation phase: When the closeTransaction request is received, the transaction is validated to

establish whether or not its operations on objects conflict with operations of other transactions on

the same objects. If the validation is successful, then the transaction can commit. If the validation

fails, then some form of conflict resolution must be used and either the current transaction or, in

some cases, those with which it conflicts will need to be aborted.

Update phase: If a transaction is validated, all of the changes recorded in its tentative versions are

made permanent. Read-only transactions can commit immediately after passing validation. Write

transactions are ready to commit once the tentative versions of the objects have been recorded in

permanent storage.

Validation of transactions • Validation uses the read-write conflict rules to ensure that the

scheduling of a particular transaction is serially equivalent with respect to all other overlapping

transactions – that is, any transactions that had not yet committed at the time this transaction

started. To assist in performing validation, each transaction is assigned a transaction number when

it enters the validation phase (that is, when the client issuescloseTransaction). If the transaction is

validated and completes successfully, it retains this number; if it fails the validation checks and is

aborted, or if the transaction is read only, the number is released for reassignment. Transaction

numbers are integers assigned in ascending sequence; the number of a transaction therefore

defines its position in time – a transaction always finishes its working phase after all transactions

with lower numbers. That is, a transaction with the number Ti always precedes a transaction with

the number Tj if i < j. (If the transaction number were to be assigned at the beginning of the

working phase, then a transaction that reached the end of the working phase before one with a

lower number would have to wait until the earlier one had completed before it could be

validated.)The validation test on transaction Tv is based on conflicts between operations in pairs of

transactions Ti and Tv. For a transaction Tv to be serializable with respect to an overlapping

transaction Ti, their operations must conform to the following rules:

DISTRIBUTED SYSTEMS AY 2025-26

Page 156

write read 1. Ti must not read objects written by Tv. read write 2.

 Tv must not read objects written by Ti.

Ti must not write objects written by Tv and

write write 3.

Tv must not write objects written by Ti.

As the validation and update phases of a transaction are generally short in duration compared with

the working phase, a simplification can be achieved by making the rule that only one transaction

may be in the validation and update phase at one time. When no two transactions may overlap in

the update phase, rule 3 is satisfied. Note that this restriction on write operations, together with the

fact that no dirty reads can occur, produces strict executions. To prevent overlapping, the entire

validation and update phases can be implemented as a critical section so that only one client at a

time can execute it. In order to increase concurrency, part of the validation and updating may be

Figure 16.28 Validation of

transactions

Working Validation Update

T
1 Earlier committed

transactions

T2

T3

Transaction being validated Tv

active1
Later active

transactions active2

implemented outside the critical section, but it is essential that the assignment of transaction

numbers is performed sequentially. We note that at any instant, the current transaction number is

like a pseudo-clock that ticks whenever a transaction completes successfully.

The validation of a transaction must ensure that rules 1 and 2 are obeyed by testing for overlaps

between the objects of pairs of transactions Tv and Ti. There are two forms of validation –

backward and forward Backward validation checks the transaction undergoing validation with

other preceding overlapping transactions – those that entered the validation phase before it.

Forward validation checks the transaction undergoing validation with other later transactions,

which are still active.

Tv Ti Rule

DISTRIBUTED SYSTEMS AY 2025-26

Page 157

Backward validation • As all the read operations of earlier overlapping transactions were

performed before the validation of Tv started, they cannot be affected by the writes of the current

transaction (and rule 1 is satisfied). The validation of transaction Tv checks whether its read set

(the objects affected by the read operations of Tv) overlaps with any of the write sets of earlier

overlapping transactions, Ti (rule 2). If there is any overlap, the validation fails.

Let startTn be the biggest transaction number assigned (to some other committed transaction)

at the time when transaction Tv started its working phase and finishTn be the biggest transaction

number assigned at the time when Tv entered the validation phase. The following program

describes the algorithm for the validation of Tv:

boolean valid = true;

for (int Ti = startTn+1; Ti <= finishTn; Ti++){

if (read set of Tv intersects write set of Ti) valid = false;

}

Figure 16.28 shows overlapping transactions that might be considered in the validation of a

transaction Tv. Time increases from left to right. The earlier committed transactions are T1, T2 and

T3. T1 committed before Tv started. T2 and T 3 committed before Tv finished its working phase.

StartTn + 1 = T2 and finishTn = T3. In backward validation, the read set of Tv must be compared

with the write sets of T 2 and T3.In backward validation, the read set of the transaction being

validated is compared with the write sets of other transactions that have already committed.

Therefore, the only way to resolve any conflicts is to abort the transaction that is undergoing

validation.

In backward validation, transactions that have no read operations (only write operations) need not

be checked.

Optimistic concurrency control with backward validation requires that the write sets of old

committed versions of objects corresponding to recently committed transactions are retained until

there are no unvalidated overlapping transactions with which they might conflict. Whenever a

transaction is successfully validated, its transaction number, startTn and write set are recorded in a

preceding transactions list that is maintained by the transaction service. Note that this list is

ordered by transaction number. In an environment with long transactions, the retention of old

write sets of objects may be a problem. For example, in Figure

16.28 the write sets of T1, T2, T3 and Tv must be retained until the active transaction active1

completes. Note that the although the active transactions have transaction identifiers, they do not

yet have transaction numbers.

DISTRIBUTED SYSTEMS AY 2025-26

Page 158

Forward validation • In forward validation of the transaction Tv, the write set of Tv is compared

with the read sets of all overlapping active transactions – those that are still in their working phase

(rule 1). Rule 2 is automatically fulfilled because the active transactions do not write until after Tv

has completed. Let the active transactions have (consecutive) transaction identifiers active1 to

activeN. The following program describes the algorithm for the forward validation of Tv:

boolean valid = true;

for (int Tid = active1; Tid <= activeN; Tid++){

if (write set of Tv intersects read set of Tid) valid = false;

}

In Figure 16.28, the write set of transaction Tv must be compared with the read sets of the

transactions with identifiers active1 and active2. (Forward validation should allow for the fact that

read sets of active transactions may change during validation and writing.) As the read sets of the

transaction being validated are not included in the check, read-only transactions always pass the

validation check. As the transactions being compared with the validating transaction are still

active, we have a choice of whether to abort the validating transaction or to pursue some

alternative way of resolving the conflict. Härder [1984] suggests several alternative strategies:

Defer the validation until a later time when the conflicting transactions have finished. However,

there is no guarantee that the transaction being validated will fare any better in the future. There is

always the chance that further conflicting active transactions may start before the validation is

achieved.

Abort all the conflicting active transactions and commit the transaction being validated.

Abort the transaction being validated. This is the simplest strategy but has the disadvantage that

future conflicting transactions may be going to abort, in which case the transaction under

validation has aborted unnecessarily.

Comparison of forward and backward validation • We have already seen that forward

validation allows flexibility in the resolution of conflicts, whereas backward validation allows

only one choice – to abort the transaction being validated. In general, the read sets of transactions

are much larger than the write sets. Therefore, backward validation compares a possibly large read

set against the old write sets, whereas forward validation checks a small write set against the read

sets of active transactions. We see that backward validation has the overhead of storing old write

sets until they are no longer needed.

DISTRIBUTED SYSTEMS AY 2025-26

Page 159

On the other hand, forward validation has to allow for new transactions starting during the

validation process.

Starvation • When a transaction is aborted, it will normally be restarted by the client program.

But in schemes that rely on aborting and restarting transactions, there is no guarantee that a

particular transaction will ever pass the validation checks, for it may come into conflict with other

transactions for the use of objects each time it is restarted. The prevention of a transaction ever

being able to commit is called starvation.

Occurrences of starvation are likely to be rare, but a server that uses optimistic concurrency

control must ensure that a client does not have its transaction aborted repeatedly. Kung and

Robinson suggest that this could be done if the server detects a transaction that has been aborted

several times. They suggest that when the server detects such a transaction it should be given

exclusive access by the use of a critical section protected by a semaphore.

Timestamp ordering

In concurrency control schemes based on timestamp ordering, each operation in a transaction is

validated when it is carried out. If the operation cannot be validated, the transaction is aborted

immediately and can then be restarted by the client. Each transaction is assigned a unique

timestamp value when it starts. The timestamp defines its position in the time sequence of

transactions. Requests from transactions can be totally ordered according to their timestamps. The

basic timestamp ordering rule is based on operation conflicts and is very simple:

transaction’s request to write an object is valid only if that object was last read and written by

earlier transactions. A transaction’s request to read an object is valid only if that object was last

written by an earlier transaction.

This rule assumes that there is only one version of each object and restricts access to one

transaction at a time. If each transaction has its own tentative version of each object it accesses,

then multiple concurrent transactions can access the same object. The timestamp ordering rule is

refined to ensure that each transaction accesses a consistent set of versions of the objects. It must

also ensure that the tentative versions of each object are commtted in the order determined by the

timestamps of the transactions that made them. This is achieved by transactions waiting, when

necessary, for earlier transactions to complete their writes. The write operations may be

performed after the closeTransaction operation has returned, without making the client wait. But

the client must wait when read operations need to wait for earlier transactions to finish. This

DISTRIBUTED SYSTEMS AY 2025-26

Page 160

Figure 16.29 Operation conflicts for timestamp ordering

Rule
T

c

T
i

1. write read Tc must not write an object that has been read by any Ti where

1. write write

2. read write

Ti > Tc.

This requires that Tc • the maximum read timestamp of the

object.

Tc must not write an object that has been written by any Ti where

Ti >Tc.

This requires that Tc > the write timestamp of the committed

object.

Tc must not read an object that has been written by any Ti where Ti

> Tc.

This requires that Tc > the write timestamp of the committed

object.

the committed object.

cannot lead to deadlock, since transactions only wait for earlier ones (and no cycle could occur

in the wait-for graph).

Timestamps may be assigned from the server’s clock or, as in the previous section,‘pseudo-

time’ may be based on a counter that is incremented whenever a timestamp value is issued. As

usual, the write operations are recorded in tentative versions of objects and are invisible to

other transactions until a closeTransaction request is issued and the transaction is committed.

Every object has a write timestamp and a set of tentative versions, each of which has a write

timestamp associated with it; each object also has a set of read timestamps. The write

timestamp of the (committed) object is earlier than that of any of its tentative versions, and the

set of read timestamps can be represented by its maximum member. Whenever a transaction’s

write operation on an object is accepted, the server creates a new tentative version of the

object with its write timestamp set to the transaction timestamp. A transaction’s read

operation is directed to the version with the maximum write timestamp less than the

transaction timestamp. Whenever a transaction’s read operation on an object is accepted, the

timestamp of the transaction is added to its set of read timestamps. When a transaction is

committed, the values of the tentative versions become the values of the objects, and the

DISTRIBUTED SYSTEMS AY 2025-26

Page 161

timestamps of the tentative versions become the timestamps of the corresponding objects. In

timestamp ordering, each request by a transaction for a read or write operation on an object is

checked to see whether it conforms to the operation conflict rules.

A request by the current transaction Tc can conflict with previous operations done by other

transactions, Ti, whose timestamps indicate that they should be later than Tc. These rules are

shown in Figure 16.29, in which Ti > Tc means Ti is later than Tc and Ti < Tc means Ti, is

earlier than Tc.

Timestamp ordering write rule: By combining rules 1 and 2 we get the following rule for

deciding whether to accept a write operation requested by transaction Tc on object D:

if (Tc • maximum read timestamp on D &&

Tc > write timestamp on committed version of D)

perform write operation on tentative version of D with write timestamp Tc else /*

write is too late */

Abort transaction Tc

 If a tentative version with write timestamp Tc already exists, the write operation is

addressed to it; otherwise, a new tentative version is created and given write timestamp Tc.

Note that any write that ‘arrives too late’ is aborted – it is too late in the sense that a

transaction with a later timestamp has already read or written the object. Figure 16.30

illustrates the action of a write operation by transaction T3 in cases where T3 maximum read

timestamp on the object (the read timestamps are not shown). In cases (a) to (c), T3 > write

timestamp on the committed version of the object and a tentative version with write

timestamp T3 is inserted at the appropriate place in the list of tentative versions ordered by

their transaction timestamps. In case (d), T3 < write timestamp on the committed version of

the object and the transaction is aborted.

DISTRIBUTED SYSTEMS AY 2025-26

Page 162

Timestamp ordering read rule: By using rule 3 we arrive at the following rule for deciding

whether to accept immediately, to wait or to reject a read operation requested by transaction Tc on

object D:

if (Tc > write timestamp on committed version of D) {

let Dselected be the version of D with the maximum write timestamp ð Tc if

(Dselected is committed)

perform read operation on the version Dselected

else

wait until the transaction that made version Dselected commits or aborts then

reapply the read rule

} else

Abort transaction Tc

 Note:

If transaction Tc has already written its own version of the object, this will be used.

A read operation that arrives too early waits for the earlier transaction to complete. If the earlier

transaction commits, then Tc will read from its committed version. If it aborts, then Tc will repeat

the read rule (and select the previous version). This rule prevents dirty reads.

A read operation that ‘arrives too late’ is aborted – it is too late in the sense that a transaction with

a later timestamp has already written the object.

Figure 16.31 illustrates the timestamp ordering read rule. It includes four cases labeled to (d), each

of which illustrates the action of a read operation by transaction T3. In each case, a version whose

write timestamp is less than or equal to T3 is selected. If such a version exists, it is indicated with a

line. In cases (a) and (b) the read operation is directed to a committed version – in (a) it is the only

version, whereas in (b) there is a tentative version belonging to a later transaction. In case (c) the read

operation is directed to a tentative version and must wait until the transaction that made it commits or

aborts. In case (d) there is no suitable version to read and transaction T3 is aborted.When a coordinator

receives a request to commit a transaction, it will always be able to do so because all the operations of

transactions are checked for consistency with those of earlier transactions before being carried out. The

committed versions of each object must be created in timestamp order. Therefore, a coordinator sometimes

needs to wait for earlier transactions to complete before writing all the committed versions of the objects

accessed by a particular transaction, but there is no need for the client to wait. In order to make a

transaction recoverable after a server crash, the tentative versions of objects and the fact that the transaction

has committed must be written to permanent storage before acknowledging the client’s request to commit

DISTRIBUTED SYSTEMS AY 2025-26

Page 163

T
4

the transaction.

Note that this timestamp ordering algorithm is a strict one – it ensures strict executions of

transactions (see Section 16.2). The timestamp ordering read rule delays a transaction’s read

operation on any object until all transactions that had previously written that object have

committed or aborted. The arrangement to commit versions in order ensures that the execution of

a transaction’s write operation on any object is delayed until all transactions that had previously

written that object have committed or aborted.

Read operations and timestamps

 proceeds proceeds

Selected Time Selected Time

(c) T3 read (d) T3 read

read waits Transaction

aborts

Selected Time Time

Flat and nested distributed transactions

A client transaction becomes distributed if it invokes operations in several different servers.

There are two different ways that distributed transactions can be structured: as flat

transactions and as nested transactions. In a flat transaction, a client makes requests to

more than one server. For example, in Figure 17.1(a), transaction T is a flat transaction

that invokes operations on objects in servers X, Y and Z. A flat client transaction

completes each of its requests before going on to the next one. Therefore, each

transaction accesses servers’ objects sequentially. When servers use locking, a transaction

can only be waiting for one object at a time.

 In a nested transaction, the top-level transaction can open subtransactions, and each

subtransaction can open further subtransactions down to any depth of nesting. Figure 17.1(b)

 shows a client transaction T that opens two subtransactions, T1 and T2, which access objects at

T2

T1

DISTRIBUTED SYSTEMS AY 2025-26

Page 164

servers X and Y. The subtransactions T1 and T2 open further subtransactions T11, T 12, T21, and

T22, which access objects at servers M, N and P. In the nested case, subtransactions at the

same level can run concurrently, so T1 and T2 are concurrent, and as they invoke objects in

different servers, they can run in parallel. The four subtransactions T11, T12, T21 and T22 also

run concurrently

Consider a distributed transaction in which a client transfers $10 from account A to C and then

transfers $20 from B to D. Accounts A and B are at separate servers X and Y and accounts C and D

are at server Z. If this transaction is structured as a set of four nested transactions, as shown in

Figure 17.2, the four requests (two deposits and two withdraws) can run in parallel and the overall

effect can be achieved with better performance than a simple transaction in which the four

operations are invoked sequentially.

Atomic commit protocols:

A transaction comes to an end when the client requests that it be committed or aborted. A simple

way to complete the transaction in an atomic manner is for the coordinator to communicate the

commit or abort request to all of the participants in the transaction and to keep on repeating the

request until all of them have acknowledged that they have carried it out. This is an example of a

one-phase atomic commit protocol.

This simple one-phase atomic commit protocol is inadequate, though, because it does not

allow a server to make a unilateral decision to abort a transaction when the client requests a

commit. Reasons that prevent a server from being able to commit its part of a transaction

generally relate to issues of concurrency control. For example, if locking is in use, the

resolution of a deadlock can lead to the aborting of a transaction without the client being

DISTRIBUTED SYSTEMS AY 2025-26

Page 165

aware unless it makes another request to the server. Also if optimistic concurrency control is

in use, the failure of validation at a server would cause it to decide to abort the transaction.

Finally, the coordinator may not know if a server has crashed and been replaced during the

progress of a distributed transaction – such a server will need to abort the transaction.The two-

phase commit protocol is designed to allow any participant to abort its part of a transaction. Due to the

requirement for atomicity, if one part of a transaction is aborted, then the whole transaction must be

aborted. In the first phase of the protocol, each participant votes for the transaction to be committed or

aborted. Once a participant has voted to commit a transaction, it is not allowed to abort it. Therefore,

before a participant votes to commit a transaction, it must ensure that it will eventually be able to

carry out its part of the commit protocol, even if it fails and is replaced in the interim. A participant in

a transaction is said to

be in a prepared state for a transaction if it will eventually be able to commit it. To make sure of this,

each participant saves in permanent storage all of the objects that it has altered in the transaction,

together with its status – prepared.

In the second phase of the protocol, every participant in the transaction carries out the joint

decision. If any one participant votes to abort, then the decision must be to abort the

transaction. If all the participants vote to commit, then the decision is to commit the

transaction.

The problem is to ensure that all of the participants vote and that they all reach the same

decision. This is fairly simple if no errors occur, but the protocol must work correctly even

when some of the servers fail, messages are lost or servers are temporarily unable to

communicate with one another.

 The two-phase commit protocol

During the progress of a transaction, there is no communication between the coordinator and

the participants apart from the participants informing the coordinator when they join the

transaction. A client’s request to commit (or abort) a transaction is directed to the coordinator.

If the client requests abortTransaction, or if the transaction is aborted by one of the

participants, the coordinator informs all participants immediately. It is when the client asks the

coordinator to commit the transaction that the two-phase commit protocol comes into use.

In the first phase of the two-phase commit protocol the coordinator asks all the participants if

they are prepared to commit; in the second, it tells them to commit (or abort) the transaction.

If a participant can commit its part of a transaction, it will agree as soon as it has recorded the

changes it has made (to the objects) and its status in

DISTRIBUTED SYSTEMS AY 2025-26

Page 166

 Figure 17.4 Operations for two-phase commit protocol

canCommit?(trans)o Yes / No

Call from coordinator to participant to ask whether it can commit a transaction.

Participant replies with its vote.

doCommit(trans)

Call from coordinator to participant to tell participant to commit its part of a

transaction.

doAbort(trans)

Call from coordinator to participant to tell participant to abort its part of a transaction.

haveCommitted(trans, participant)

Call from participant to coordinator to confirm that it has committed the transaction.

getDecision(trans) o Yes / No

Call from participant to coordinator to ask for the decision on a transaction when it has

voted

Yes but has still had no reply after some delay. Used to recover from server crash or

delayed messages.

permanent storage and is therefore prepared to commit. The coordinator in a distributed

transaction communicates with the participants to carry out the two-phase commit protocol

by means of the operations summarized in Figure 17.4. The methods canCommit, doCommit

and doAbort are methods in the interface of the participant. The methods haveCommitted and

getDecision are in the coordinator interface.

The two-phase commit protocol consists of a voting phase and a completion phase, as shown

in Figure 17.5. By the end of step 2, the coordinator and all the participants that voted Yes are

prepared to commit. By the end of step 3, the transaction is effectively completed. At step 3a

the coordinator and the participants are committed, so the coordinator can report a decision to

commit to the client. At 3b the coordinator reports a decision to abort to the client.

At step 4 participants confirm that they have committed so that the coordinator knows when

the information it has recorded about the transaction is no longer needed.

This apparently straightforward protocol could fail due to one or more of the servers crashing

or due to a breakdown in communication between the servers. To deal with the possibility of

crashing, each server saves information relating to the two-phase commit protocol in

permanent storage. This information can be retrieved by a new process that is started to

replace a crashed server. The recovery aspects of distributed transactions are discussed in

Section 17.6.

The exchange of information between the coordinator and participants can fail when one of

the servers crashes, or when messages are lost. Timeouts are used to avoid processes

DISTRIBUTED SYSTEMS AY 2025-26

Page 167

blocking forever. When a timeout occurs at a process, it must take an appropriate action. To

allow for this the protocol includes a timeout action for each step at which a process may

block. These actions are designed to allow for the fact that in an asynchronous system, a

timeout may not necessarily imply that a server has failed

 The two-phase commit protocol

Phase 1 (voting phase):

The coordinator sends a canCommit? request to each of the participants in the transaction.

When a participant receives a canCommit? request it replies with its vote (Yes or No) to the

coordinator. Before voting Yes, it prepares to commit by saving objects in permanent

storage. If the vote is No, the participant aborts immediately.

Phase 2 (completion according to outcome of vote):

The coordinator collects the votes (including its own).

(a) If there are no failures and all the votes are Yes, the coordinator decides to commit the

(b) transaction and sends a doCommit request to each of the participants.

(c) Otherwise, the coordinator decides to abort the transaction and sends doAbort requests to all

participants that voted Yes.

 Participants that voted Yes are waiting for a doCommit or doAbort request from the coordinator.

When a participant receives one of these messages it acts accordingly and, in the case of commit,

makes a haveCommitted call as confirmation to the coordinator.

 Concurrency control in distributed transactions

 Locking

In a distributed transaction, the locks on an object are held locally (in the same server). The

local lock manager can decide whether to grant a lock or make the requesting transaction

wait. However, it cannot release any locks until it knows that the transaction has been

committed or aborted at all the servers involved in the transaction. When locking is used for

concurrency control, the objects remain locked and are unavailable for other transactions

during the atomic commit protocol, although an aborted transaction releases its locks after

phase 1 of the protocol.

As lock managers in different servers set their locks independently of one another, it is

possible that different servers may impose different orderings on transactions. Consider the

following interleaving of transactions T and U at servers X and Y:

write(A) at X locks A

T U

DISTRIBUTED SYSTEMS AY 2025-26

Page 168

read(B) at Y waits for U

write(B) at Y locks B

read(A) at X waits for T

The transaction T locks object A at server X, and then transaction U locks object B at

server Y. After that, T tries to access B at server Y and waits for U’s lock. Similarly,

transaction U tries to access A at server X and has to wait for T’s lock. Therefore, we have

T before U in one server and U before T in the other. These different orderings can lead to

cyclic dependencies between transactions, giving rise to a distributed deadlock situation.

The detection and resolution of distributed deadlocks is discussed in Section 17.5. When a

deadlock is detected, a transaction is aborted to resolve the deadlock. In this case, the

coordinator will be informed and will abort the transaction at the participants involved in

the transaction.

DISTRIBUTED SYSTEMS AY 2025-26

Page 169

Timestamp ordering concurrency control

In a single server transaction, the coordinator issues a unique timestamp to each transaction

when it starts. Serial equivalence is enforced by committing the versions of objects in the

order of the timestamps of transactions that accessed them. In distributed transactions, we

require that each coordinator issue globally unique timestamps. A globally unique transaction

timestamp is issued to the client by the first coordinator accessed by a transaction. The

transaction timestamp is passed to the coordinator at each server whose objects perform an

operation in the transaction.

The servers of distributed transactions are jointly responsible for ensuring that they are

performed in a serially equivalent manner. For example, if the version of an object accessed

by transaction U commits after the version accessed by T at one server, if T and U access the

same object as one another at other servers they must commit them in the same order. To

achieve the same ordering at all the servers, the coordinators must agree as to the ordering of

their timestamps. A timestamp consists of a <local timestamp, server-id> pair. The agreed

ordering of pairs of timestamps is based on a comparison in which the server-id part is less

significant.

The same ordering of transactions can be achieved at all the servers even if their local clocks

are not synchronized. However, for reasons of efficiency it is required that the timestamps

issued by one coordinator be roughly synchronized with those issued by the other

coordinators. When this is the case, the ordering of transactions generally corresponds to the

order in which they are started in real time. Timestamps can be kept roughly synchronized by

the use of synchronized local physical clocks

When timestamp ordering is used for concurrency control, conflicts are resolved as each

operation is performed using the rules given in Section 16.6. If the resolution of a conflict

requires a transaction to be aborted, the coordinator will be informed and it will abort the

transaction at all the participants. Therefore any transaction that reaches the client request to

commit should always be able to commit, and participants in the two-phase commit protocol

will normally agree to commit. The only situation in which a participant will not agree to

commit is if it has crashed during the transaction.

DISTRIBUTED SYSTEMS AY 2025-26

Page 170

Distributed deadlocks

With deadlock detection schemes, a transaction is aborted only when it is involved in a deadlock.

Most deadlock detection schemes operate by finding cycles in the transaction wait-for graph. In a

distributed

system involving multiple servers being accessed by multiple transactions, a global

d.deposit(10) lock D

b.deposit(10) lock B

a.deposit(20) lock A at Y

at X

c.deposit(30) lock C

b.withdraw(30
) wait at Y at Z

c.withdraw(20
) wait at Z

a.withdraw(20

) wait at X

wait-for graph can in theory be constructed from the local ones. There can be a cycle in the

global wait-for graph that is not in any single local one – that is, there can be a distributed

deadlock. Recall that the wait-for graph is a directed graph in which nodes represent

transactions and objects, and edges represent either an object held by a transaction or a

transaction waiting for an object. There is a deadlock if and only if there is a cycle in the

wait-for graph.

Figure 17.12 shows the interleavings of the transactions U, V and W involving the objects A

and B managed by servers X and Y and objects C and D managed by server Z.

The complete wait-for graph in Figure 17.13(a) shows that a deadlock cycle consists of

alternate edges, which represent a transaction waiting for an object and an object held by a

transaction. As any transaction can only be waiting for one object at a time, objects can be

left out of wait-for graphs, as shown in Figure 17.13(b).

Detection of a distributed deadlock requires a cycle to be found in the global transaction

wait-for graph that is distributed among the servers that were involved in the transactions.

U V W

DISTRIBUTED SYSTEMS AY 2025-26

Page 171

Local wait-for graphs can be built by the lock manager at each server, as discussed in

Chapter 16. In the above example, the local wait-for graphs of the servers are:

 server Y: U o V (added when U requests b.withdraw(30))

 server Z: V o W (added when V requests c.withdraw(20)) server X: W o U (added when W

requests a.withdraw(20))

 As the global wait-for graph is held in part by each of the several servers involved,

communication between these servers is required to find cycles in the graph.

 A simple solution is to use centralized deadlock detection, in which one server takes on the

role of global deadlock detector. From time to time, each server sends the latest copy of its

local wait-for graph to the global deadlock detector, which amalgamates the information in

the local graphs in order to construct a global wait-for graph. The global deadlock detector

checks for cycles in the global wait-for graph When it finds a cycle, it makes a decision on

how to resolve the deadlock and tells the servers which transaction to abort.

 Centralized deadlock detection is not a good idea, because it depends on a single server to

carry it out. It suffers from the usual problems associated with centralized solutions in

distributed systems – poor availability, lack of fault tolerance and no ability to scale. In

addition, the cost of the frequent transmission of local wait-for graphs is high. If the global

graph is collected less frequently, deadlocks may take longer to be detected.

 Phantom deadlocks • A deadlock that is ‘detected’ but is not really a deadlock is called

phantom deadlock. In distributed deadlock detection, information about wait-for relationships

between transactions is transmitted from one server to another. If there is a deadlock, the

necessary information will eventually be collected in one place and a cycle will be detected.

As this procedure will take some time, there is a chance that one of the transactions that holds

a lock will meanwhile have released it, in which case the deadlock will no longer exist.

 Transaction recovery

The atomic property of transactions requires that all the effects of committed transactions

and none of the effects of incomplete or aborted transactions are reflected in the objects

they accessed. This property can be described in terms of two aspects: durability and

failure atomicity. Durability requires that objects are saved in permanent storage and will

be available indefinitely thereafter. Therefore an acknowledgement of a client’s commit

request implies that all the effects of the transaction have been recorded in permanent

storage as well as in the server’s (volatile) objects. Failure atomicity requires that effects of

DISTRIBUTED SYSTEMS AY 2025-26

Page 172

transactions are atomic even when the server crashes. Recovery is concerned with ensuring

that a server’s objects are durable and that the service provides failure atomicity.

Although file servers and database servers maintain data in permanent storage, other kinds

of servers of recoverable objects need not do so except for recovery purposes. In this

chapter, we assume that when a server is running it keeps all of its objects in its volatile

memory and records its committed objects in a recovery file or files. Therefore recovery

consists of restoring the server with the latest committed versions of its objects from

permanent storage. Databases need to deal with large volumes of data. They generally hold

the objects in stable storage on disk with a cache in volatile memory.

The requirements for durability and failure atomicity are not really independent of one

another and can be dealt with by a single mechanism – the recovery manager. The tasks of

a recovery manager are: to save objects in permanent storage (in a recovery file) for

committed transactions; to restore the server’s objects after a crash; to reorganize the

recovery file to improve the performance of recovery; to reclaim storage space (in the

recovery file).

In some cases, we require the recovery manager to be resilient to media failures.

Corruption during a crash, random decay or a permanent failure can lead to failures of the

recovery file, which can result in some of the data on the disk being lost. In such cases we

need another copy of the recovery file. Stable storage, which is implemented so as to be

very unlikely to fail by using mirrored disks or copies at a different location may be used

for this purpose.

 Intentions list • Any server that provides transactions needs to keep track of the objects

accessed by clients’ transactions. when a client opens a transaction, the server first contacted

provides a new transaction identifier and

 Types of entry in a recovery file

Object A value of an object.
Transaction identifier, transaction status (prepared,
committed,

Transaction

status

aborted) and other status values used for the two-phase

commit
protocol.

Transaction identifier and a sequence of intentions, each of
which

DISTRIBUTED SYSTEMS AY 2025-26

Page 173

Intentions list consists of <objectID, Pi>, where Pi is the position in the recoverle of the
 value of the object.

returns it to the client. Each subsequent client request within a transaction up to

anincluding the commit or abort request includes the transaction identifier as an

argument. During the progress of a transaction, the update operations are applied to a

private set of tentative versions of the objects belonging to the transaction.

At each server, an intentions list is recorded for all of its currently active transactions

– an intentions list of a particular transaction contains a list of the references and the

values of all the objects that are altered by that transaction. When a transaction is

committed, that transaction’s intentions list is used to identify the objects it affected.

The committed version of each object is replaced by the tentative version made by

that transaction, and the new value is written to the server’s recovery file. When a

transaction aborts, the server uses the intentions list to delete all the tentative versions

of objects made by that transaction. Recall also that a distributed transaction must

carry out an atomic commit protocol before it can be committed or aborted. Our

discussion of recovery is based on the two-phase commit protocol, in which all the

participants involved in a transaction first say whether they are prepared to commit

and later, if all the participants agree, carry out the actual commit actions. If the

participants cannot agree to commit, they must abort the transaction.At the point

when a participant says it is prepared to commit a transaction, its recovery manager

must have saved both its intentions list for that transaction and the objects in that

intentions list in its recovery file, so that it will be able to carry out the commitment

later, even if it crashes in the interim.When all the participants involved in a

transaction agree to commit it, the coordinator informs the client and then sends

messages to the participants to commit their part of the transaction. Once the client

has been informed that a transaction has committed, the recovery files of the

participating servers must contain sufficient information to ensure that the transaction

is committed by all of the servers, even if some of them crash between preparing to

commit and committing.

Entries in recovery file • To deal with recovery of a server that can be involved in

distributedtransactions, further information in addition to the values of the objects is

DISTRIBUTED SYSTEMS AY 2025-26

Page 174

stored in the recovery file. This information concerns the status of each

transaction – whether it is committed, aborted or prepared to commit

Logging: In the logging technique, the recovery file represents a log containing the

history of all the transactions performed by a server. The history consists of values of

objects, transaction status entries and transaction intentions lists. The order of the

entries in the log reflects the order in which transactions have prepared, committed

and aborted at that server. In practice, the recovery file will contain a recent snapshot

of the values of all the objects in the server followed by a history of transactions

postdating the snapshot.

During the normal operation of a server, its recovery manager is called whenever a

transaction prepares to commit, commits or aborts a transaction. When the server is

prepared to commit a transaction, the recovery manager appends all the objects in its

intentions list to the recovery file, followed by the current status of that transaction

(prepared) together with its intentions list. When a transaction is eventually

committed or aborted, the recovery manager appends the corresponding status of the

transaction to its recovery file. It is assumed that the append operation is atomic in the

sense that it writes one or more complete entries to the recovery file. If the server

fails, only the last write can be incomplete. To make efficient use of the disk, several

subsequent writes can be buffered and then written to disk as a single write. An

additional advantage of the logging technique is that sequential writes to disk are

faster than writes to random locations. After a crash, any transaction that does not

have a committed status in the log is aborted. Therefore when a transaction commits,

its committed status entry must be forced to the log – that is, written to the log

together with any other buffered entries. The recovery manager associates a unique

identifier with each object so that the successive versions of an object in the recovery

file may be associated with the server’s objects. For example, a durable form of a

remote object reference such as a CORBA persistent reference will do as an object

identifier Figure 17.19 illustrates the log mechanism for the banking service

transactions T and U in Figure 16.7. The log was recently reorganized, and entries to

the left of the double line represent a snapshot of the values of A, B and C before

transactions T and U started. In this diagram, we use the names A, B and C as unique

identifiers for objects. We show the situation when transaction T has committed and

transaction U has prepared but not committed. When transaction T prepares to

DISTRIBUTED SYSTEMS AY 2025-26

Page 175

commit, the values of objects A and B are written at positions P1 and P2 in the log,

followed by a prepared transaction status entry for T with its intentions list (< A, P1 >,

< B, P2 >). When transaction T commits, a committed transaction status entry for T is

put at position P4. Then when transaction U prepares to commit, the values of objects

C and B are written at positions P5 and P6 in the log, followed by a prepared

transaction status entry for U with its intentions list (< C, P5 >, < B, P6 >).

P
0

 P
1

P P P
2 3 4

P P P
5 6 7

Object: Object:B Object:
A

80

Object:B Trans:T Trans:T

committe
220 prepared d

<A, P1>

<B, P2>

P0 P3

Object:C Object:B
Trans:U

278 242 prepared

<C, P5>

<B, P6>
P4

A Object:C

100 200 300

 Checkpoint End

Recovery of objects • When a server is replaced after a crash, it first sets default initial

values for its objects and then hands over to its recovery manager. The recovery manager is

responsible for restoring the server’s objects so that they include all the effects of the

committed transactions performed in the correct order and none of the effects of incomplete

or aborted transactions.

The most recent information about transactions is at the end of the log. There are two

approaches to restoring the data from the recovery file. In the first, the recovery manager

starts at the beginning and restores the values of all of the objects from the most recent

checkpoint (discussed in the next section). It then reads in the values of each of the objects,

associates them with their transaction’s intentions lists and for committed transactions

replaces the values of the objects. In this approach, the transactions are replayed in the order

in which they were executed and there could be a large number of them. In the second

approach, the recovery manager will restore a server’s objects by ‘reading the recovery file

backwards’. The recovery file has been structured so that there is a backwards pointer from

each transaction status entry to the next. The recovery manager uses transactions with

committed status to restore those objects that have not yet been restored. It continues until it

has restored all of the server’s objects. This has the advantage that each object is restored

once only To recover the effects of a transaction, a recovery manager gets the corresponding

DISTRIBUTED SYSTEMS AY 2025-26

Page 176

intentions list from its recovery file. The intentions list contains the identifiers and positions

in the recovery file of values of all the objects affected by the transaction. If the server fails at

the point reached in Figure 17.19, its recovery manager will recover the objects as follows. It

starts at the last transaction status entry in the log (at P7) and concludes that transaction U has

not committed and its effects should be ignored. It then moves to the previous transaction

status entry in the log (at P4) and concludes that transaction T has committed. To recover the

objects affected by transaction T, it moves to the previous transaction status entry in the log

(at P3) and finds the intentions list for T (< A, P1 >, < B, P2 >). It then restores objects A and

B from the values at P1 and P2. As it has not yet restored C, it moves back to P0, which is a

checkpoint, and restores C. To help with subsequent reorganization of the recovery file, the

recovery manager notes all the prepared transactions it finds during the process of restoring

the server’s objects. For each prepared transaction, it adds an aborted transaction status to the

recovery file. This ensures that in the recovery file, every transaction is eventually shown as

either committed or aborted. The server could fail again during the recovery procedures. It is

essential that recovery be idempotent, in the sense that it can be done any number of times

with the same effect. This is straightforward under our assumption that all the objects are

restored to volatile memory. In the case of a database, which keeps its objects in

permanent storage with a cache in volatile memory, some of the objects in permanent storage

will be out of date when a server is replaced after a crash. Therefore the recovery manager

has to restore the objects in permanent storage. If it fails during recovery, the partially

restored objects will still be there. This makes idempotence a little harder to achieve.

Recovery of the two-phase commit protocol In a distributed transaction, each server

keeps its own recovery file. The recovery management described in the previous section must

be extended to deal with any transactions that are performing the two-phase commit protocol

at the time when a server fails. The recovery managers use two new status values for this

purpose: done and uncertain. These status values are shown in Figure 17.6. A coordinator

uses committed to indicate that the outcome of the vote is Yes and done to indicate that the

two-phase commit protocol is complete. A participant uses uncertain to indicate that it has

voted Yes but does not yet know the outcome of the vote. Two additional types of entry allow

a coordinator to record a list of participants and a participant to record its coordinator:

DISTRIBUTED SYSTEMS AY 2025-26

Page 177

Coordinator Transaction identifier, list of participants

Participant Transaction identifier, coordinator

In phase 1 of the protocol, when the coordinator is prepared to commit (and has already

added a prepared status entry to its recovery file), its recovery manager adds a coordinator

entry to its recovery file. Before a participant can vote Yes, it must have already prepared to

commit (and must have already added a prepared status entry to its recovery file). When it

votes Yes, its recovery manager records a participant entry and adds an uncertain transaction

status to its recovery file as a forced write. When a participant votes No, it adds an abort

transaction status to its recovery file.

In phase 2 of the protocol, the recovery manager of the coordinator adds either a committed

or an aborted transaction status to its recovery file, according to the decision. This must be a

forced write (that is, it is written immediately to the recovery file). Recovery managers of

participants add a commit or abort transaction status to their recovery files according to the

message received from the coordinator. When a coordinator has received a confirmation

from all of its participants, its recovery manager adds a done transaction status to its recovery

file – this need not be forced. The done status entry is not part of the protocol but is used

when the recovery file is reorganized. Figure 17.21 shows the entries in a log for transaction

T, in which the server played the coordinator role, and for transaction U, in which the server

played the participant role. For both transactions, the prepared transaction status entry

comes first. In the case of a coordinator it is followed by a coordinator entry and a

committed transaction status entry. The done transaction status entry is not shown in Figure

17.21. In the case of a participant, the prepared transaction status entry is followed by a

participant entry whose state is uncertain and then a committed or aborted transaction status

entry.

 Figure 17.21 Log with entries relating to two-phase commit protocol

• Trans:T Trans:U

committe
d prepared

intentions

list

•

•
Part’pant:
U Trans:U Trans:U
Coord’r: . . committe
. uncertain d

Type of entry Description of contents of entry

•

list: . . .
prepared

intentions

list

Coord’r:
Trans:T T

part’pant

DISTRIBUTED SYSTEMS AY 2025-26

Page 178

When a server is replaced after a crash, the recovery manager has to deal with the two-phase

commit protocol in addition to restoring the objects. For any transaction where the server has

played the coordinator role, it should find a coordinator entry and a set of transaction status

entries. For any transaction where the server played the participant role, it should find a

participant entry and a set of transaction status entries. In both cases, the most recent

transaction status entry – that is, the one nearest the end of the log – determines the

transaction status at the time of failure. The action of the recovery manager with respect to the

two-phase commit protocol for any transaction depends on whether the server was the

coordinator or a participant and on its status at the time of failure, as shown in Figure 17.22.

Reorganization of recovery file • Care must be taken when performing a checkpoint to

ensure that coordinator entries of transactions without status done are not removed from the

recovery file. These entries must be retained until all the participants have confirmed that they

have completed their transactions. Entries with status done may be discarded. Participant

entries with transaction state uncertain must also be retained.

Recovery of nested transactions • In the simplest case, each subtransaction of a nested

transaction accesses a different set of objects. As each participant prepares to commit during

the two-phase commit protocol, it writes its objects and intentions lists to the local recovery

file, associating them with the transaction identifier of the top-level transaction. Although

nested transactions use a special variant of the two-phase commit protocol, the recovery

manager uses the same transaction status values as for flat transactions.

However, abort recovery is complicated by the fact that several subtransactions at the same

and different levels in the nesting hierarchy can access the same object. Section 16.4 describes

a locking scheme in which parent transactions inherit locks and subtransactions acquire locks

from their parents. The locking scheme forces parent transactions and subtransactions to

access common data objects at different times and ensures that accesses by concurrent

subtransactions to the same objects must be serialized. Objects that are accessed according to

the rules of nested transactions are made recoverable by providing tentative versions for each

subtransaction. The relationship between the tentative versions of an object used by the

subtransactions of a nested transaction is similar to the relationship between the locks. To

support recovery from aborts, the server of an object shared by transactions at multiple levels

provides a stack of tentative versions – one for each nested transaction to use.

	DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
	PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)
	PROGRAM SPECIFIC OUTCOMES (PSOs)
	UNIT I
	Introduction
	Distributed systems Principles
	Centralised System Characteristics
	Distributed System Characteristics
	RESOURCE SHARING
	THE CHALLENGES IN DISTRIBUTED SYSTEM:

	INTRODUCTION TO SYSTEM MODELS
	Architectural models
	Software layers
	Middleware
	Interfaces in Programming Languages
	• Interfaces in Distributed Systems
	• Object Interfaces
	Clients invoke individual servers
	UNIT II
	CLOCKS, EVENTS AND PROCESS STATES
	Synchronizing physical clocks
	Logical time and logical clocks
	Synchronizing physical clocks (1)
	The Berkeley algorithm
	Logical time and logical clocks (1)
	e →i e'

	Global states
	Distributed Garbage Collection

	Coordination And Agreement
	12.2 Distributed Mutual Exclusion
	Elections
	Multicast Communication
	Consensus and related problems
	UNIT III
	UDP datagram communication
	TCP stream communication

	External data representation and marshalling
	COBRBA’s Common Data Representation (CDR)
	Java object serialization
	Remote object references
	Client-server communication
	Request-reply communication
	Multicast peer joins a group and sends and receives datagrams

	Communication between Distributed Objects
	The Object Model
	Object References
	Interfaces
	Actions
	Exceptions
	Garbage Collection
	Distributed Objects
	Usually adopt the client-server architecture
	The Distributed Object Model
	Remote and local method invocations
	Remote Object and Its remote Interface
	Design Issues for RMI
	RMI Design Issues: Invocation Semantics
	Invocation semantics: choices of interest
	Implementation of RMI
	The role of proxy and skeleton in remote method invocation
	• Servant
	• RMI software
	Implementation Alternatives of RMI
	• Binder
	• Activation of remote objects
	• Persistent object stores
	Distributed Garbage Collection
	Remote Procedure Call
	Role of client and server stub procedures in RPC in the context of a procedural language
	Files interface in Sun XDR
	Dealing room system: allow dealers using computers to see the latest information about the market prices of the stocks they deal in
	Example: Distributed Event Notification
	UNIT IV
	DISTRIBUTED FILE SYSTEMS
	File Service Architecture
	Figure 6. Flat file service operations
	Figure 7. Directory service operations
	DFS: Case Studies
	Sun Network File System NFS architecture
	Figure 9. NFS server operations (NFS Version 3 protocol, simplified)
	Figure 10. Local and remote file systems accessible on an NFS client
	Case Study: The Andrew File System (AFS)
	Figure 11. Distribution of processes in the Andrew File System
	Figure 12. File name space seen by clients of AFS
	Figure 13. System call interception in AFS
	Figure 14. implementation of file system calls in AFS
	Cache consistency

	DISTRIBUTED SHARED MEMORY
	Message passing versus DSM
	Paged virtual memory:

	Program Reader:
	Design and implementation issues
	Structure
	Byte-oriented
	Object-oriented
	Immutable data
	Synchronization model
	Consistency model
	Sequential consistency
	Coherence
	Weak consistency
	Update options
	Granularity
	Thrashing
	CONSISTENCY MODELS
	UNIT-V

	Introduction
	Simple synchronization (without transactions)
	Atomic operations at the server •
	Simple synchronization (without transactions) (1)
	Atomic operations at the server • (1)
	Simple synchronization (without transactions) (2)
	Atomic operations at the server • (2)

	Transactions
	client’s banking transaction

	Nested transactions
	Locks
	Increasing concurrency in locking schemes
	Optimistic concurrency control
	Timestamp ordering
	Flat and nested distributed transactions
	Atomic commit protocols:
	Concurrency control in distributed transactions
	Distributed deadlocks
	Transaction recovery

